FEEDBACK AMPLIFIER PROBLEMS

1.) Use the concepts of negative feedback to design R_D and R_S so that if g_m varies by $\pm 50\%$ that the voltage gain, V_2/V_1, is equal to $-10 \pm 10\%$. The nominal value of $g_m = 2 \times 10^{-3}$ mhos and r_d is infinite. (Answer: $R_D = 25$ kilohms and $R_S = 2$ kilohms)

2.) A single-loop feedback circuit is shown. Solve for the input resistance defined as $R_{in} = V_1/I_1$ for the element values shown. (Answer: $R_{in} \approx 10^9$ ohms)

3.) Find the output impedance of the circuit shown where this impedance is designated as R_{out}. Assume that r_d is infinite and that $g_m = 5 \times 10^{-3}$ mhos. (Answer: $R_{out} = 2.22$ kilohms)
4.) A negative feedback circuit is shown below. Use the techniques of feedback analysis to analyze this circuit and find the voltage gain, \(\frac{V_2}{V_1} \), the current gain, \(\frac{I_2}{I_1} \), the input resistance, \(\frac{V_1}{I_1} \), and the output resistance, \(\frac{V_2}{I_2} \). Assume that \(r_{mi} = 1 \text{k} \) and \(B = 100 \) for both transistors. Ignore \(r_o \) and \(r_u \).

(Answer: \(\frac{V_2}{V_1} = 2.94 \), \(\frac{I_2}{I_1} = -1874 \), \(\frac{V_1}{I_1} = 6.376 \text{ M} \), \(\frac{V_2}{I_2} = 80.43 \text{ k} \))

5.) Use the methods of opening the feedback loop to find \(R_{in} \), \(\frac{V_2}{V_1} \), and \(R_{out} \) of the circuit shown. Assume the \(g_m = 3 \times 10^{-3} \text{ mhos} \), \(r_d \) is infinite, \(B = 100 \) and \(r_{in} = 1000 \text{ ohms} \).

(Answer: \(\frac{V_2}{V_1} = 20.12 \), \(R_{in} = 1 \text{ M} \), \(R_{out} = 280 \text{ k} \))
6.) A feedback amplifier using BJT's is shown below.

a.) What type of single loop feedback topology is this circuit?
Identify the variables \(X_s, X_f, X_k, \) and \(X_0 \) with regard to their location in the circuit and whether they are voltages or currents.
(Answer: voltage series)

b.) Assume that the open loop gain is much greater than unity and find an approximate value for \(V_o/V_{in} \).
(Answer: 100)

c.) Calculate the voltage gain, \(V_o/V_{in} \), using the methods of opening the feedback loop and calculating A and B. Do not assume that the loop gain is greater than unity.
(Answer: 79.67)

d.) Calculate \(R_{in} \) and \(R_{out} \) of this circuit.
(Answer: \(R_{in}=63.98 \, k\Omega \), \(R_{out}=164\Omega \))

(Answer: \(r_{\pi 1}=r_{\pi 2}=r_{\pi 3}=1\, k\Omega \) \(B_1=B_2=B_3 = 50 \))

7.) Use the concepts of feedback analysis to find \(V_2/V_1, V_1/I_1=R_{in}, \) and \(V_2/I_2=R_{out}. \)
Do not assume that the open loop gain is much greater than unity. Assume that all transistors are identical with \(B=100 \) and \(r_o=r_d=∞ \) and \(I_{C1}=0.6\, mA, \) \(I_{C2}=1\, mA, \) and \(I_{C3}=4\, mA. \)
(Answer: \(V_2 = 50, 21, R_{in}=3.187\, M\Omega, \) \(\frac{V_2}{V_1} \)
\(R_{out} = 600\Omega \)})
8.) A two stage feedback circuit is shown below. Assume that both transistors are identical and have a $B=100$ and an $r_n=1000$ ohms. Use the methods of feedback analysis to find: B, A_f, $R_{in} = V_1/I_1$, $R_{out} = V_2/I_1$, and V_2/V_1.

(Answer: $A = 0.04975$ mhos, $B = 2K\Omega$, $A_f = 4.95 \times 10^{-4}$ mhos, $R_0 = 10K\Omega$, $V_2 = -4.9$, $R_{in} = 20M\Omega$)

9.) A feedback circuit is shown. Do not assume that the loop gain is much greater than unity. Find V_2/I_1, R_{in}, and R_{out}. Assume that $r_n = 1000$ ohms, $B = 100$, $g_m = .001$ mhos, and $r_d = \infty$.

(Answer: $\frac{V_2}{I_1} = -34,400\Omega$, $R_{in} = 643\Omega$, $R_{out} = 10K\Omega$)

10.) A feedback circuit is shown. Do not assume that the loop gain is much greater than unity. Find V_2/V_1, $R_{in} = V_1/I_1$, and $R_{out} = V_2/I_2$. Assume all transistors are identical and have $B = 100$ and $r_n = 1000$ ohms. (Answer: $\frac{V_2}{V_1} = 100.79$, $R_{in} = 1K\Omega$, $R_{out} = 10K\Omega$)
11.) For the feedback network shown find \(V_o/V_g, R_{in}, \) and \(R_{out} \). Assume that \(r_{m1}=r_{m2}=r_{m3}=1000 \) ohms and \(B_1=B_2=B_3=100 \).

(Answer: \(\frac{V_o}{V_g} = -20.0 \), \(R_{in} = 1000.03 \) ohms, \(R_{out} = 0.126 \) ohms)

12.) A single loop negative feedback circuit is shown. Assume that \(B=100 \), \(r_m=1000 \) ohms, and that \(r_u=r_o=0 \) for all BJT's and that \(g_m=1\times10^{-3} \) mhos and \(r_d \) is infinite for the JFET. Do not assume that the loop gain is much greater than one. Use the methods of opening the feedback loop and identify \(\chi_S, \chi_I, \chi_F, \) and \(\chi_o \); find values for \(A \) and \(B \); and solve for \(V_{out}/V_{in}, R_{in}, \) and \(R_{out} \).

(Answer: \(A=9.09 \times 10^6 \) ohms, \(B= -10^{-5} \) mhos, \(\frac{V_{out}}{V_{in}} = 98.912 \), \(R_{in} = 1000.1 \) ohms, \(R_{out} = 98.87 \) ohms)
13.) A negative feedback circuit is shown. Do not assume that the loop gain is greater than one and use the methods of opening the loop to calculate a value of $\frac{V_2}{V_1}$ and $R_{in}=\frac{V_1}{I_1}$. Assume that $A_B=100$, $r_\pi=1000$ ohms, $g_m=10^{-3}$ mhos, and $r_{ds}=\infty$.

(Answer: $\frac{V_2}{V_1} = 5.025$, $R_{in} = 10.187$ ohms)

14.) The negative feedback amplifier shown has the current-shunt topology. Do not assume that $A_B>1$ and use the methods of opening the feedback network to calculate A and β and numerically evaluate $\frac{V_2}{V_1}$, R_{in}, and R_{out}. Assume both transistors are identical and have $B=100$ and $r_\pi = 1000$ ohms.

(Answer: $\frac{V_2}{V_1} = 1.0007 \times 10^5$, $R_{in} = 0.1$ ohms, $R_{out} = 10K$ ohms)
15.) A two stage feedback circuit is shown below. Assume that both JFET's are identical and have a $g_m = 10^{-3}$ mhos and $r_d = \infty$. Use the methods of feedback analysis to find A, β, A_f, $R_{in} = \frac{V_1}{I_1}$, $R_{out} = \frac{V_2}{I}$, & $\frac{V_2}{V_1}$.

(Answer: $A = -334$, $B = -\frac{1}{101}$, $A_f = -77.47$, $\frac{V_2}{V_1} = 33.4$, $R_{in} = 23.29K$ ohms, $R_{out} = 10K$ ohms)

16.) In the feedback circuit shown, assume that all the transistors are equal with $\beta = 100$, $r_m = 1000$ ohms, and $r_u=r_o=\infty$. Do not assume that the loop gain is much greater than unity. Use the techniques of feedback analysis to find $\frac{V_2}{V_1}$, R_{in}, and R_{out}.

(Answer: $\frac{V_2}{V_1} = 9.899$, $R_{in} = 1010.1$ ohms, $R_{out} = 10K$ ohms)
17.) For the feedback amplifier shown, find V_2/V_1, I_2/I_1, R_{in}, and R_{out}. Assume that Q1 and Q2 are identical with small signal parameters of $r_n = 1000$ ohms and $\beta = 100$. Do not assume that $|A|\gg 1$.

(Answer: $\frac{V_2}{V_1} = 4.805$, $R_{in} = 1000.476$ ohms, $R_{out} = 1K$ ohms)

18.) For the circuit shown, assume that the β's of all BJT's and the g_m of all JFET's are very large, approaching infinity. Assume further that h_i's are zero and that r_d is infinite. Identify the topology, label the variables X_5, X_i, X_f, and X_0 where X is a voltage or current, and find the approximate gain if a.) R_2 is the load resistor and b.) R_3 is the load resistor.

(Answer: a.) $\frac{I_0}{I_1} = 1$, b.) $\frac{V_0}{V_1} = 1$)

\[\text{Diagram of circuit} \]
19.) For the circuit shown, assume that the β of all BJTs and the g_m of all JFETs are very large, approaching infinity. Assume further that r_π's are zero and that r_d is infinite. Identify the topology, label the variables X_S, X_I, X_F, and X_0 where X is a voltage or current, and find the approximate gain if a.) R_4 is the load resistor and b.) R_5 is the load resistor.

(Answer: a.) $I_O = R_1$, b.) $V_O = R_1$)

20.) A negative feedback circuit is shown. You are to use the assumption that $A_\beta >> 1$.

1. Find the approximate value of the DC output voltage, $V_{Out}(DC)$. (Answer: 11.3V)

2. Find the approximate AC voltage gain, V_{out}/V_{in}. (Answer: 9)

3. Give an estimate of the open loop forward gain of this circuit if all the transistors have an $\beta = 100$. (Answer: $A = 6230$)

4. If $1/(R_1C_1) << 1/(R_2C_2)$, find the lower -3dB frequency and the upper -3dB frequency. (Answer: $f_{-3dB \ (lower)} = 15.9 \ Hz$, $f_{-3dB \ (upper)} = 15.9 \ kHz$)