REVIEW FOR FINAL EXAMINATION

The final examination will be given on Monday, April 26, 2004, from 2:50pm to 5:40pm in Room C341 of Van Leer. Two pages of notes are permitted and if relationships you need are not available, ask your instructor/proctor. These notes should not include any reduced copies of textbook, previous homework, quizzes or exams. The exam is closed book and will consist of approximately 7 problems of which 5 problems, each worth 20 points for a total of 100 points, must be worked. The 7 problems will fall into two categories, those you must work and those you may work. Below is a list of the material for which you are responsible.

Amplifiers

Voltage gain, current gain, power gain

Two-port models for amplifiers

Amplifiers with finite source and load resistances

Amplifier frequency response – Lower and upper –3dB frequencies, midband gain, BW Input and output resistance of amplifiers

Operational Amplifiers

Ideal op amp

Analysis of circuits containing ideal op amps

Inverting and noninverting amplifiers

Other types of op amp circuits – summing, difference, integrators, first-order circuits

Cascaded amplifiers

Frequency response of inverting and noninverting amplifiers, cascaded stages

Transistor Amplifiers

The BJT and FET amplifier

Coupling and bypass capacitors – midband gain analysis

DC and ac analysis of amplifiers

Small-signal models – diode, BJT, MOSFET, and JFET

Small-signal model parameters as functions of the large signal variables and model parameters

Common-emitter and common-source transistor amplifier analysis (voltage gain, current gain, input resistance, and output resistance)

Single Transistor Amplifiers

BJT – common emitter, common-collector, common-base and common-nothing (voltage gain, current gain, input resistance, and output resistance)

FET – common source, common-drain, common-gate and common-nothing (voltage gain, current gain, input resistance, and output resistance)

Designing transistor amplifiers

Multistage Amplifiers

AC-coupled multistage amplifiers

Direct coupled multistage amplifiers

Differential amplifiers – differential mode analysis, common mode analysis, CMRR

Frequency Response

Amplifier frequency response

Direct analysis of the roots of an amplifier

Finding the low-frequency cutoff frequency, ω_L , by various methods-dominant pole, multiple poles, and the short-circuit time constant method

High-frequency models for the BJT and FET – unity gain frequency, f_T

Finding the high-frequency cutoff frequency, ω_H , by various methods-dominant pole, multiple poles, and the open-circuit time constant method Frequency response of multistage amplifiers

Feedback Stability and Oscillators

Concepts of feedback circuits

Two-port network theory applied to negative feedback circuits

Identification of the type of feedback

Finding the voltage gain, current gain, input resistance and output resistance of a transistor amplifier with feedback using the feedback approach (open the loop find A and F, use A and F to find the input and output resistances)

Influence of feedback on the frequency response of an amplifier with feedback

Stability of a feedback circuit – Bode criteria, phase margin

Oscillators – RC and LC

Nonlinear Op Amp Circuits

Precision rectification Amplitude limitation Waveform generators