Homework Assignment No. 1

Due on Monday, August 23, 2004
1.) (a.) Find the dc current, $I_{D Q}$, and the dc voltage, V_{DQ}, of the diode in the circuit shown if V_{IN} is +10 V . Assume the large signal model for the diode is a short circuit when $\mathrm{v}_{\mathrm{D}} \geq 0 \mathrm{~V}$ and an open circuit when $\mathrm{v}_{\mathrm{D}} \leq$ 0 V . (b.) Repeat part (a.) if $\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V}$.

2.) If $\beta_{F}=100$ and $V_{B E Q}=0.6 \mathrm{~V}$, solve for the dc values of $I_{B}, I_{C}, I_{E}, V_{B} . V_{C}$ and V_{E} of the transistor circuit shown.

3.) A pnp BJT circuit is shown. (a.) Find the dc values of I_{E}, I_{C}, I_{B}, V_{E}, V_{C} and V_{B} if $\beta=50$ and $V_{E B}($ on $)=0.65 V$. (b.) For what value of R_{C} does the BJT become saturated? (Recall that saturation of a BJT corresponds to the $B E$ and $B C$ junctions forward biased.)

4.) The NMOS transistor shown has the parameters of K_{n} $=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{T N}=1 \mathrm{~V}$ and $\lambda_{N}=0 \mathrm{~V}^{-1}$. In saturation, the large signal model is $i_{D}=0.5 K_{n}\left(v_{G S^{-}} V_{T}\right)^{2}$.
a.) Assume the NMOS transistor is saturated and find the value of R_{S} that gives a drain current of 0.2 mA .
b.) What value of R_{D} will cause the MOSFET to go from the saturation to the active region when $I_{D}=0.2 \mathrm{~mA}$?

5.) The following questions give the dc voltages at the terminals of an active device. You are to calculate the designated dc current.
a.) Find the diode current, I_{D}, where $I_{S}=100 \mathrm{fA}$ and $V_{T}=0.025 \mathrm{~V}(2 \mathrm{pts})$.

F02Q01P1A
b.) Find the drain-source current, $I_{D S}$, where $K_{n}{ }^{\prime}=25 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}=1 \mathrm{~V}$ and $W / L=10(2 \mathrm{pts})$.

c.) Find the collector, emitter, and base currents, I_{C}, I_{E}, and I_{B} if $I_{S}=$ $100 \mathrm{fA}, V_{T}=0.025 \mathrm{~V}$ and $\beta_{F}=100(4 \mathrm{pts})$.

d.) Repeat (b.) if $V_{D}=1 \mathrm{~V}$ and $V_{G}=3 \mathrm{~V}(2 \mathrm{pts})$.

