Homework Assignment No. 3

Due on Wednesday, September 8, 2004
1.) A circuit using an ideal op amp is shown.

(a.) Find the s-domain transfer function, $V_{\text {out }}(s) / V_{\text {in }}(s)$ and solve for the numerical values of all roots.
(b.) Assuming the answer to part (a.) is given below, sketch an asymptotic magnitude and phase frequency response of this transfer function.

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=-10\left(\frac{s+100}{s+10}\right)
$$

2.) The differential amplifier below uses an ideal op amp. Find the values of R_{1}, R_{2}, R_{3} and R_{4} if the single-ended input resistances, $R_{\text {in } 1}$ and $R_{\text {in } 2}$ are to be $100 \mathrm{k} \Omega$ and the output voltage is to be $v_{\text {out }}=10\left(v_{1}-v_{2}\right)$.

3.) Assume that the op amps are ideal and find $i_{\text {out }}$ as a function of the inputs, v_{1} and v_{2}. Find the input resistance defined as $R_{i n}=\left(v_{2}-v_{1}\right) / i_{i n}$.

4.) Problem 11.38 (12.24) of the text [Ans. $v_{o 2}=-\frac{R_{2}}{R_{1}} v_{s}$. and $v_{o 1}=-\left(\frac{R_{2}}{R_{1}}+\frac{R_{3}}{R_{1}}\right) v_{s}$]
5.) Problem 11.39 (12.29 modified - see second edition) of the text.
6.) Problem 11.98 (12.74) of the text

