Homework Assignment No. 5

Due on Monday, September 20, 2004

Problems in () refer to the first edition.

1.) Problem 13.102 (13.91) of the text.

2.) Problem 13.111 (13.100) of the text. \[A_v = -4.60 \text{ V/V} \]

3.) Problem 13.118 (13.108) of the text.

4.) A PMOS common-drain amplifier is shown. Assume the parameters of the transistor are \(k_F = 0.5 \text{mA/V}^2 \), \(V_{TP} = -1 \text{V} \), and \(\lambda = 0 \). (a.) If \(I_{SD} = 0.5 \text{mA} \), find the small signal model parameter values for \(g_m \) and \(r_o \).

(b.) Find an algebraic expression for the small signal input resistance, \(R_{in} \), the output resistance, \(R_{out} \), and the voltage gain, \(v_{out}/v_{in} \).

(c.) Numerically evaluate the small signal input resistance, \(R_{in} \), the output resistance, \(R_{out} \), and the voltage gain, \(v_{out}/v_{in} \).

5.) A NMOS common-source inverting amplifier is shown. Assume the parameters of the transistor are \(K_N = 1 \text{mA/V}^2 \), \(V_{TN} = 1 \text{V} \), and \(\lambda = 0 \). (a.) Find the small signal model parameter values for \(g_m \) and \(r_{ds} \).

(b.) Find an algebraic expression for the small signal input resistance, \(R_{in} \), the output resistance, \(R_{out} \), and the voltage gain, \(v_{out}/v_{in} \).

(c.) Numerically evaluate the small signal input resistance, \(R_{in} \), the output resistance, \(R_{out} \), and the voltage gain, \(v_{out}/v_{in} \).