Homework Assignment No. 5

Due on Monday, September 20, 2004
Problems in () refer to the first edition.
1.) Problem 13.102 (13.91) of the text.
2.) Problem 13. 111 (13.100) of the text. $\left[A_{v}=-4.60 \mathrm{~V} / \mathrm{V}\right]$
3.) Problem 13.118 (13.108) of the text.
4.) A PMOS common-drain amplifier is shown. Assume the parameters of the transistor are $k_{F}=0.5 \mathrm{~mA} / \mathrm{V}^{2}, V_{T P}=-1 \mathrm{~V}$, and $\lambda=0$. (a.) If $I_{S D}=0.5 \mathrm{~mA}$, find the small signal model parameter values for g_{m} and r_{o}. (b.) Find an algebraic expression for the small signal input resistance, $R_{i n}$, the output resistance, $R_{\text {out }}$, and the voltage gain, $v_{\text {out }} / v_{i n}$. (c.) Numerically evaluate the small signal input resistance, $R_{i n}$, the output resistance, $R_{\text {out }}$, and the voltage gain, $v_{\text {out }} / v_{i n}$.

5.) A NMOS common-source inverting amplifier is shown. Assume the parameters of the transistor are $K_{N}=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{T N}=$ 1 V , and $\lambda=0$. (a.) Find the small signal model parameter values for g_{m} and $r_{d s}$. (b.) Find an algebraic expression for the small signal input resistance, $R_{i n}$, the output resistance, $R_{\text {out }}$, and the voltage gain, $v_{\text {out }} / v_{\text {in }}$. (c.) Numerically evaluate the small signal input
 resistance, $R_{\text {in }}$, the output resistance, $R_{\text {out }}$, and the voltage gain, $v_{\text {out }} / v_{i n}$.

