Homework Assignment No. 13 - Solutions

Problem 1
Use the method of feedback analysis to find $v_{2} / v_{1}, R_{\text {in }}=v_{1} / i_{1}$, and $R_{\text {out }}=v_{2} / i_{2}$. Assume that all transistors are matched and that $g_{m 1}=g_{m 2}=$ 1 mS . Neglect $r_{d s}$.

Solution

The topology is series-series.
The circuit is redrawn below in order to help identify the various terms for the analysis:

$$
\left.\begin{aligned}
& z_{11 \mathrm{~F}}=\frac{v_{1 F}}{i_{1 F}} i_{2 F}=0=R_{5}=1 \mathrm{k} \Omega \\
& \left.z_{22 \mathrm{~F}}=\frac{v_{2 F}}{i_{2 F}} i_{1 F} \right\rvert\, \\
& z_{12 \mathrm{~F}}=\beta=R_{4}+R_{5}=10 \mathrm{k} \Omega \\
& i_{2 F} \\
& i_{1 F}=0
\end{aligned} \right\rvert\,
$$

Calculation of the A circuit:

$A=\frac{i_{o}{ }^{\prime}}{v_{s}{ }^{\prime}}=\left(\frac{i_{o}{ }^{\prime}}{v_{g s 2^{\prime}}}\right)\left(\frac{v_{g s 2}{ }^{\prime}}{v_{g s 1}{ }^{\prime}}\right)\left(\frac{v_{g s 2^{\prime}}}{v_{s}{ }^{\prime}}\right)=\left(-g_{m}\right)\left(\frac{-g_{m} R_{2}}{1+g_{m} R_{3}}\right)\left(\frac{1}{1+g_{m} R_{5}}\right)=\left(10^{-3}\right)(-5)(-0.5)=2.5 \mathrm{mS}$
$\therefore \frac{i_{o}}{v_{s}}=\frac{A}{1+A \beta}=\frac{2.5 \mathrm{mS}}{1+2.5}=0.714 \mathrm{mS}$
Since, $z_{11 \mathrm{~A}}=\infty$, then $R_{\text {in }}=50 \mathrm{k} \Omega \| \infty=\underline{\underline{50 \mathrm{k} \Omega}}$

$$
\begin{array}{r}
\frac{v_{2}}{v_{1}}=\frac{-i_{o} R_{3}}{v_{s}}=\frac{-i_{o}}{v_{s}} R_{3}=-0.714 \mathrm{mS}(1 \mathrm{k} \Omega)=\underline{\underline{-0.714 \mathrm{~V} / \mathrm{V}}} \\
R_{o}=\left(z_{22 T}+R_{3}\right)(1+A \beta)=\left(\frac{1}{g_{m}}+R_{3}\right)(1+A \beta)=2 \mathrm{k} \Omega(3.5)=7 \mathrm{k} \Omega
\end{array}
$$

However, the output resistance specified by the problem, $R_{\text {out }}$, is found as

$$
R_{\text {out }}=\left(R_{o}-R_{3}\right)\left\|R_{3}=6 \mathrm{k} \Omega\right\| 1 \mathrm{k} \Omega=\underline{\underline{857 \Omega}}
$$

Problem 2

A feedback amplifier is shown. Use the methods of feedback analysis to find the numerical values of $v_{2} / v_{1}, v_{1} / i_{1}$, and v_{2} / i_{2}. Assume that all transistors are matched and that $g_{m}=1 \mathrm{mS}$, and $r_{d s}=\infty$.

Solution

The feedback circuit is shunt-series. You should know by now not to include R_{1} in the feedback circuit. The simplified transistor circuit and the openloop equivalent is shown below. It is easy to see that $\beta=i_{1 F} / i_{2 F}\left(v_{1 F}=0\right)=-1$.

The small-signal, open-loop circuit is,

Also, $i_{1}{ }^{\prime}+\frac{v_{g s 1^{\prime}}}{R_{4}}+g_{m 1} v_{g s 1^{\prime}}{ }^{\prime}=0 \quad \Rightarrow \quad i_{1}{ }^{\prime}=-\left(\frac{1}{R_{4}}+g_{m 1}\right) v_{g s 1}$,
$\therefore A=\frac{i_{o}{ }^{\prime}}{i_{1}{ }^{\prime}}=\left(-g_{m 2}\right)\left(\frac{1}{1+g_{m 2} R_{3}}\right)\left(-g_{m 1} R_{2}\right)\left(\frac{-1}{\frac{1}{R_{4}+g_{m 1}}}\right)=(-1 \mathrm{mS})(0.5)(-20)(-0.5 \mathrm{k} \Omega)=-5 \mathrm{~A} / \mathrm{A}$
Now, $\frac{i_{o}}{i_{1}}=\frac{-5}{1+(-1)(-5)}=-\frac{5}{6} \mathrm{~A} / \mathrm{A}$

$$
\begin{aligned}
& R_{i n}(\beta=0)=R_{4} \|\left(1 / g_{m 1}\right)=0.5 \mathrm{k} \Omega, R_{i n F}=\frac{0.5 \mathrm{k} \Omega}{1+5}=\frac{1}{12} \mathrm{k} \Omega=83.33 \Omega \quad \frac{v_{1}}{i_{1}}=\underline{1083.33 \Omega} \\
& \frac{v_{2}}{v_{1}}=\frac{i_{o}}{i_{1}}\left(\frac{-R 3}{\left(v_{1} / i_{1}\right)}\right)=-\frac{5}{6} \frac{-1000}{1083.33}=\frac{10}{13}=\underline{0.7692 \mathrm{~V} / \mathrm{V}} \\
& R_{o}(\beta=0)=R_{3}+\left(1 / g_{m 2}\right)=2 \mathrm{k} \Omega, \quad R_{o F}=2 \mathrm{k} \Omega(1+5)=12 \mathrm{k} \Omega \\
& \frac{v_{2}}{i_{2}}=(12 \mathrm{k} \Omega-1 \mathrm{k} \Omega)\|1 \mathrm{k} \Omega=11 \mathrm{k} \Omega\| 1 \mathrm{k} \Omega=\frac{11}{12} \mathrm{k} \Omega=\underline{\underline{916.67 \Omega}}
\end{aligned}
$$

Problem 3 - The amplifier in the feedback circuit shown has a transfer function of

$$
A(s)=\frac{100}{\frac{s}{10^{5}}+1}
$$

What value of β will increase the upper -3 db frequency by a factor of 10 for the closed loop gain? What is the closed loop, low frequency gain?

Solution

$$
\begin{aligned}
& A_{F}=\frac{A}{1+A \beta}=\frac{1}{\frac{1}{A}+\beta}=\frac{1}{\frac{s / 10^{5}+1}{100}+\beta}=\frac{100}{\frac{s}{10^{5}+1+100 \beta}}=\left(\frac{100}{1+100 \beta}\right) \frac{1}{\frac{s}{10^{5}(1+100 \beta)}+1} \\
\therefore & 10^{5}(1+100 \beta)=10^{6} \quad \rightarrow \quad 1+100 \beta=10 \rightarrow \quad \underline{\beta=9 / 100=0.09}
\end{aligned}
$$

The closed-loop, low frequency gain is,

$$
A_{F}(0)=\frac{100}{1+100 \beta}=\frac{100}{1+9}=10 \quad \rightarrow \quad \underline{\underline{A_{F}}} \underline{\underline{(0)}=10}
$$

4.) Problem 18.40 of the text.

$$
\begin{aligned}
& \left.T=\frac{v_{o}}{v_{x}}=g_{m 2}\left(r_{o 2} \| r_{o 4}\right) \frac{\left(\beta_{o}+1\right) R}{\left(r_{o 2} \| r_{o 4}\right)+r_{\pi 3}+\left(\beta_{o}+1\right) R} \quad \right\rvert\, g_{m 1}=40\left(10^{-4}\right)=4.00 \mathrm{mS} \\
& r_{o 2}=\frac{50+1.4}{10^{-4}}=514 k \Omega \quad\left|r_{o 4}=\frac{50+11.3}{10^{-4}}=613 \mathrm{k} \Omega \quad\right| r_{\pi 3}=\frac{100(0.025)}{(12 \mathrm{~V} / 10 \mathrm{k} \Omega)}=2.08 \mathrm{k} \Omega \\
& T=\left(4 \times 10^{-3}\right)(280 \mathrm{k} \Omega) \frac{(101) 10 k \Omega}{280 \mathrm{k} \Omega+2.08 \mathrm{k} \Omega+101(10 \mathrm{k} \Omega)}=876
\end{aligned}
$$

5.) Problem 18.59 of the text.
(a) $A(s)=\frac{\frac{2 \times 10^{14} \pi^{2}}{\left(2 \pi \times 10^{3}\right)\left(2 \pi \times 10^{5}\right)}}{\left(1+\frac{s}{2 \pi \times 10^{3}}\right)\left(1+\frac{s}{2 \pi \times 10^{5}}\right)}=\frac{5 \times 10^{5}}{\left(1+\frac{s}{2 \pi \times 10^{3}}\right)\left(1+\frac{s}{2 \pi \times 10^{5}}\right)}$
$A(s)$ represents a low - pass amplifier with two widely - spaced poles
Open-loop: $A_{o}=5 \times 10^{5}=114 d B \quad\left|\quad f_{L}=0 \quad\right| \quad f_{H} \cong f_{1}=1000 \mathrm{~Hz}$
(b) A common mistake would be the following:

Closed - loop : $f_{H}=1000 \mathrm{~Hz}\left[1+5 \times 10^{5}(0.01)\right]=5 \mathrm{MHz}$
Oops! - This exceeds $f_{2}=100 \mathrm{kHz}$! This is a two - pole low - pass amplifier.

$$
A_{v}(s)=\frac{\frac{2 \times 10^{14} \pi^{2}}{\left(s+2 \pi \times 10^{3}\right)\left(s+2 \pi \times 10^{5}\right)}}{1+\frac{2 \times 10^{14} \pi^{2}}{\left(s+2 \pi \times 10^{3}\right)\left(s+2 \pi \times 10^{5}\right)}(0.01)}=\frac{2 \times 10^{14} \pi^{2}}{s^{2}+1.01\left(2 \pi \times 10^{5}\right) s+2 \times 10^{12} \pi^{2}}
$$

Using dominant - root factorization : $f_{1}=101 \mathrm{kHz}, f_{2}=4.95 \mathrm{MHz}$
So the closed-loop values are $f_{H}=101 \mathrm{kHz}$ and $f_{L}=0$.

