High Frequency Response

Methods of Finding ω_H

1. Given the roots $\left(\frac{1}{\omega_i} \right)$
 a. Bode plot
 b. Dominant pole

 \[\omega_H \approx \omega_p \text{ (dominant)} \text{ if } \omega_p \text{ (dominant)} \leq \frac{\omega_p \text{ (dominant)}}{4} \]

 c. \[\omega_H = \frac{1}{\omega_p} \approx \frac{1}{\sqrt{\frac{1}{\omega_p^2} + \frac{1}{\omega_p^2}} + \ldots} \]

 d. Exact solution (quadratic)

2. Roots not Known
 a. Miller effect
 \[Z_i = \frac{V_i}{I_i} = \frac{V_i}{V_1 - V_2} \]
 \[Z_i = \frac{V_i}{sC_m(V_1 - V_2)} = \frac{1}{sC_m(1 + \frac{V_2}{V_1})} \]
 \[Z_i = \frac{1}{sC_m(1 + AV)} \]

 But $\frac{V_2}{V_1} = AV$, so $Z_i = \frac{1}{sC_m(1 - AV)}$

 If AV is negative, then $Z_i = \frac{1}{sC_m(1 + AV)}$

 \[C_{eq} = (1 + AV)C_m \]
b.) Approximate solution for a quadratic (p. 1311)

\[s^2 + \alpha s + b = (s + \rho_1)(s + \rho_2) = s^2 + \rho_1 s + \rho_2 s + \rho_1 \rho_2 \]

Assume \(\rho_1 < \rho_2 \)

\[s^2 + \alpha s + b \approx s^2 + \rho_2 s + \rho_1 \rho_2 \Rightarrow \rho_2 = \frac{\alpha}{2}, \quad \rho_1 = \frac{b}{\alpha} \]

c.) Open-circuit Time Constant

\[W_H = \frac{1}{\sum_{i=1}^{m} R_{i0} C_i} \]

Where \(R_{i0} \) is the Thevenin resistance seen from \(C_i \) with all other caps open-circuited.

Where does the high frequency response come from?

- Coupling caps and bypass caps are shorts.
- Active Transistor parasitics and other parasitics.

BJT High Frequency Model:

\[C_m = \text{the reverse-bias BC junction capacitance} \]

\[C_m = \frac{C_{40}}{\sqrt{1 + \frac{V_{CE}}{\Phi_{bc}}} \quad \text{Normal regime of operation}} \]
\[C_T = g_m \tau_F + C_{be} \text{ where } \tau_F = \text{forward time constant} \]

Unity-Gain Bandwidth \(\omega_T \)

CE configuration at high frequencies

\[\frac{I_{out}}{I_n} = \left(\frac{V_{be}}{V_{be}} \right) = \left(g_m \right) \left(\frac{V_{be}}{I_m} \right) = \frac{g_m}{\frac{1}{\tau_F + s(C_T + C_m)} + \frac{1}{s(C_T + C_m)}} \]

Output impedance

\[\frac{I_{out}}{I_n} = \frac{g_m V_T}{s(C_T + C_m) V_T} = \frac{G_0}{s(C_T + C_m) V_T} \]

\[W_T = \frac{\tau_F}{C_{pi} + C_{m}} \]

Typically \(C_T >> C_m \)
V_x: V_x is a small resistance in series with base of about 100-500Ω. It varies with I_c and is called "the base spreading resistance."

MOSFET High Frequency Model

$$W_T = \frac{g_m}{C_{gs} C_{gd}}$$

$C_{gs} > C_{gd}$

Circuit Diagram

- V_{in}
- R_c
- C_{gd}
- R_D
- R_L
- V_{out}