QUIZ NO. 2

(Average score $=6.4 / 10$ of those taking the quiz)
The g-parameters for a linear two-port network are given as

$$
i_{1}=g_{11} v_{1}+g_{12} i_{2} \quad \text { and } \quad v_{2}=g_{21} v_{1}+g_{22} i_{2}
$$

Find g_{11}, g_{21}, g_{12}, and g_{22} for the linear two-port network shown. (This is a model for an inverting op amp with a large but finite voltage gain, A.)

Solution

$i_{2}=0: g_{11}=\frac{i_{1}}{v_{1}}$ and $g_{21}=\frac{v_{2}}{v_{1}}$
Loop equation at the input gives $\quad v_{1}=i_{1}\left(R_{1}+R_{2}\right)-A v_{i}$
Another loop equation at the input gives $\quad v_{i}=v_{1}-i_{1} R_{1}$

$$
\begin{aligned}
\therefore \quad & v_{1}=i_{1}\left(R_{1}+R_{2}\right)-A\left(v_{1}-i_{1} R_{1}\right)=i_{1}\left(R_{1}+R_{2}+A R_{1}\right)-A R_{1} v_{1} \\
& v_{1}(1+A)=i_{1}\left(R_{1}+R_{2}+A R_{1}\right) \rightarrow \quad g_{11}=\frac{i_{1}}{v_{1}}=\frac{1+A}{R_{1}+R_{2}+A R_{1}}
\end{aligned}
$$

At the output we can write, $v_{2}=-A v_{i}$.
Replacing v_{i} with $v_{1}-i_{1} R_{1}$ gives

$$
\begin{aligned}
& v_{2}=-A\left(v_{1}-i_{1} R_{1}\right)=-A v_{1}+A R_{1}\left(\frac{v_{1}-v_{2}}{R_{1}+R_{2}}\right)=-A v_{1}+\left(\frac{A R_{1}}{R_{1}+R_{2}}\right) v_{1}-\left(\frac{A R_{1}}{R_{1}+R_{2}}\right) v_{2} \\
& \text { or } \quad\left(1+\frac{A R_{1}}{R_{1}+R_{2}}\right) v_{2}=\left(\frac{R_{1}+R_{2}+A R_{1}}{R_{1}+R_{2}}\right) v_{2}=A\left(\frac{R_{1}}{R_{1}+R_{2}}-1\right) v_{1}=-A\left(\frac{R_{2}}{R_{1}+R_{2}}\right) v_{1}
\end{aligned}
$$

Taking the ratio of the second and last terms above gives

$$
g_{21}=\frac{v_{2}}{v_{1}}=\left(\frac{-A R_{2}}{R_{1}+R_{2}+A R_{1}}\right)
$$

$v_{1}=0: g_{12}=\frac{i_{1}}{i_{2}}$ and $g_{22}=\frac{v_{2}}{i_{2}}$
A model for the two port driven by i_{2} with $v_{1}=$ 0 is shown. We see that all the current, i_{2}, will flow into the controlled voltage source because it has a zero resistance and none will flow through the $R_{1}+R_{2}$ combination. Therefore, i_{1}
 $=0$ and thus $v_{2}=0$. Consequently, both g_{12} and g_{22} are zero.

$$
g_{12}=\frac{i_{1}}{i_{2}}=\frac{0}{i_{2}}=0 \quad \text { and } \quad g_{22}=\frac{v_{2}}{i_{2}}=\frac{0}{i_{2}}=0
$$

