QUIZ NO. 2

(Average score = 6.4/10 of those taking the quiz)

The *g*-parameters for a linear two-port network are given as

 $i_1 = g_{11}v_1 + g_{12}i_2$ and $v_2 = g_{21}v_1 + g_{22}i_2$

Find g_{11} , g_{21} , g_{12} , and g_{22} for the linear two-port network shown. (This is a model for an inverting op amp with a large but finite voltage gain, A.)

<u>Solution</u>

$$i_2 = 0$$
: $g_{11} = \frac{i_1}{v_1}$ and $g_{21} = \frac{v_2}{v_1}$

Loop equation at the input gives $v_1 = i_1(R_1 + R_2) - Av_i$

Another loop equation at the input gives $v_i = v_1 - i_1 R_1$

$$\therefore \qquad v_1 = i_1(R_1 + R_2) - A(v_1 - i_1R_1) = i_1(R_1 + R_2 + AR_1) - AR_1v_1$$
$$v_1(1+A) = i_1(R_1 + R_2 + AR_1) \implies \qquad g_{11} = \frac{i_1}{v_1} = \frac{1+A}{R_1 + R_2 + AR_1}$$

At the output we can write, $v_2 = -Av_i$.

Replacing v_i with $v_1 - i_1 R_1$ gives

$$v_{2} = -A(v_{1} - i_{1}R_{1}) = -Av_{1} + AR_{1}\left(\frac{v_{1} - v_{2}}{R_{1} + R_{2}}\right) = -Av_{1} + \left(\frac{AR_{1}}{R_{1} + R_{2}}\right)v_{1} - \left(\frac{AR_{1}}{R_{1} + R_{2}}\right)v_{2}$$

or $\left(1 + \frac{AR_{1}}{R_{1} + R_{2}}\right)v_{2} = \left(\frac{R_{1} + R_{2} + AR_{1}}{R_{1} + R_{2}}\right)v_{2} = A\left(\frac{R_{1}}{R_{1} + R_{2}} - 1\right)v_{1} = -A\left(\frac{R_{2}}{R_{1} + R_{2}}\right)v_{1}$

Taking the ratio of the second and last terms above gives $g_{21} = \frac{v_2}{v_1} = \left(\frac{-AR_2}{R_1 + R_2 + AR_1}\right)$

$$v_1 = 0$$
: $g_{12} = \frac{i_1}{i_2}$ and $g_{22} = \frac{v_2}{i_2}$

A model for the two port driven by i_2 with $v_1 = 0$ is shown. We see that all the current, i_2 , will flow into the controlled voltage source because it has a zero resistance and none will flow through the $R_1 + R_2$ combination. Therefore, $i_1 = 0$ and thus $v_2 = 0$. Consequently, both g_{12} and g_{22} are zero.

$$g_{12} = \frac{i_1}{i_2} = \frac{0}{i_2} = 0$$
 and

	v_2	$\frac{0}{2}$
$g_{22} =$	$\overline{i_2}$ =	$=\overline{i_2}=0$

