QUIZ NO. 3 - SOLUTION

(Average score $=6.8 / 10$ of those taking the quiz)
The voltage amplifier shown uses an ideal op amp.
a.) Find the voltage gain, $v_{\text {out }} / v_{\text {in }}$ in terms of the resistors R_{1}, R_{2}, R_{3} and R_{4}.
b.) Find the input resistance, $R_{i n}$, in terms of resistors R_{1}, R_{2}, R_{3} and R_{4}.
c.) If $R_{1}=R_{4}=90 \mathrm{k} \Omega$ and $R_{2}=R_{3}=100 \mathrm{k} \Omega$ numerically
 evaluate $v_{\text {out }} / v_{\text {in }}$ and $R_{\text {in }}$.

Solution

a.) This problem cannot be worked using the inverting and voltage amplifier configurations so we must use that fact that the input voltage to the op amp is zero.

$$
\begin{aligned}
& \therefore \quad v_{\text {id }}=v^{+}-v^{-}=\frac{v_{\text {out }} R_{3}}{R_{3}+R_{4}}-\left[\frac{v_{\text {in }} R_{2}}{R_{1}+R_{2}}+\frac{v_{\text {out }} R_{1}}{R_{1}+R_{2}}\right]=0 \\
& v_{\text {out }}\left[\frac{R_{3}}{R_{3}+R_{4}}-\frac{R_{1}}{R_{1}+R_{2}}\right]=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) v_{\text {in }} \quad \rightarrow \quad \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{\frac{R_{2}}{R_{1}+R_{2}}}{\frac{R_{3}}{R_{3}+R_{4}}-\frac{R_{1}}{R_{1}+R_{2}}}
\end{aligned}
$$

Thus,

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{R_{2}}{R_{3}\left(\frac{R_{1}+R_{2}}{R_{3}+R_{4}}\right)-R_{1}}=\frac{R_{2}\left(R_{3}+R_{4}\right)}{R_{2} R_{3}-R_{1} R_{4}}
$$

b.) $v_{\text {in }}=i_{1} R_{1}-i_{2} R_{3}$ but $i_{1} R_{2}=i_{2} R_{4}$ so we get,

$$
v_{\text {in }}=i_{1} R_{1}-R_{3}\left(\frac{R_{2}}{R_{4}}\right) i_{1}=i_{1}\left(R_{1}-\frac{R_{2} R_{3}}{R_{4}}\right)
$$

$$
\therefore \quad R_{\text {in }}=R_{1}-\frac{R_{2} R_{3}}{R_{4}}=\frac{R_{1} R_{4}-R_{2} R_{3}}{R_{4}}
$$

c.) The numerical values become,

$$
\begin{aligned}
& \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{100 \mathrm{k} \Omega}{100 \mathrm{k} \Omega(1)-90 \mathrm{k} \Omega}=10 \mathrm{~V} / \mathrm{V} \text { and } R_{\text {in }}=90 \mathrm{k} \Omega-\frac{100 \mathrm{k} \Omega \cdot 100 \mathrm{k} \Omega}{90 \mathrm{k} \Omega}=-21.11 \mathrm{k} \Omega \\
& \frac{v_{\text {out }}}{v_{\text {in }}}=10 \mathrm{~V} / \mathrm{V} \quad \text { and } \quad R_{\text {in }}=-21.11 \mathrm{k} \Omega
\end{aligned}
$$

Obviously, the voltage source driving this voltage amplifier must have a source resistance greater than $21.11 \mathrm{k} \Omega$ for the circuit to remain stable.

