QUIZ NO. 4 - SOLUTION

(Average score $=7.5 / 10$ of those taking the quiz)
(a.) Replace the transistor in the circuit shown with a npn BJT that has a $\beta_{o}=100, V_{T}=25 \mathrm{mV}$, and $V_{A}=\infty$. Assume that $I_{C Q}=0.5 \mathrm{~mA}$ and find the numerical values of voltage gain, $v_{\text {out }} / v_{\text {in }}, R_{\text {in }}$. and $R_{\text {out }}$.
(b.) Replace the transistor in the circuit shown with a NMOS FET that has a $K_{n}=1 \mathrm{~mA} / \mathrm{V}^{2}$ and $\lambda=0$.
Assume that $I_{D Q}=0.5 \mathrm{~mA}$ and find the numerical values of voltage gain, $v_{\text {out }} / v_{\text {in }}, R_{\text {in }}$. and $R_{\text {out }}$. (Hint: let r_{π} of

F04Q04P1 part (a.) be ∞.)
c.) In your own words tell why the small-signal voltage gain of the BJT CE amplifier is greater (roughly x 10) than the small-signal voltage gain of the NMOS CS amplifier when the currents are the same and the external circuit is the same.

Solution

a.) The small-signal model for the case of the BJT is shown below $\left(R_{B}=R_{1} \| R_{2}\right)$.

$$
\begin{aligned}
& R_{\text {in }}=R_{S}+R_{B}\left\|r_{\pi}=1 \mathrm{k} \Omega+100 \mathrm{k} \Omega\right\| 5 \mathrm{k} \Omega=1 \mathrm{k} \Omega+4.762 \mathrm{k} \Omega=5.762 \mathrm{k} \Omega
\end{aligned} R_{\text {out }}=R_{3}=\underline{\underline{20 \mathrm{k} \Omega}}
$$

b.) If we let $r_{\pi}=\infty$, then the above results are applicable to the MOSFET.

$$
\begin{array}{ll}
& g_{m}=\sqrt{2 K_{N} I_{D Q}}=\sqrt{2 \cdot 1 \cdot 0.5}=1 \mathrm{mS} \\
& R_{\text {in }}=R_{s}+R_{B}=1 \mathrm{k} \Omega+100 \mathrm{k} \Omega=\underline{\underline{101 \mathrm{k} \Omega}} \quad R_{\text {out }}=R_{3}=\underline{\underline{20 \mathrm{k} \Omega}} \\
\text { and } & \frac{v_{\text {out }}}{v_{\text {in }}}=\left(-g_{m} \cdot R_{3} \| R_{L}\right)\left(\frac{R_{B}}{R_{s}+R_{B}}\right)=(-1 \cdot 10)\left(\frac{100}{101}\right)=\underline{\underline{-9.9 \mathrm{~V} / \mathrm{V}}}
\end{array}
$$

c.) The difference is due to the small-signal transconductances. The transconductance is the slope of the collector/drain current as a function of base-emitter/gate source voltage. This function for the BJT is an exponential and for the MOSFET is a parabola. At any equivalent value of collector/drain current the slope of the exponential is at least 10 times that of a parabola. One could also say that it is due to the difference between diffusion current (BJT) and drift current (FET).

