QUIZ NO. 7 - SOLUTION

(Average score $=8.8 / 10$ of those taking the quiz)
Assume that Q 1 and Q 2 and the resistors R_{C} of the differential amplifier shown are matched. If $\beta_{F}=100, V_{t}=$ $25 \mathrm{mV}, V_{B E Q}=0.6 \mathrm{~V}$, and $V_{A}=\infty$, find (a.) the numerical value of $I_{C 1}$ and $I_{C 2}$ if $v_{1}=v_{2}=0$. (b.) For the rest of the problem assume that $I_{C 1}=I_{C 2}=0.5 \mathrm{~mA}$ and find the numerical value of $v_{C 1} / v_{i d}$ where $v_{i d}=v_{1}-v_{2}$. (c.) Find the numerical value of $v_{C 1} / v_{i c}$ where $v_{i c}=v_{1}=v_{2}$. (d.) Find the numerical value of the differential input resistance defined as,

$$
R_{i d}=v_{i d} / i_{i n}
$$

Solution

(a.) $\quad I_{C 1}=I_{C 2}=0.5 I_{E E}=0.5\left(\frac{10 \mathrm{~V}-0.6 \mathrm{~V}}{10 \mathrm{k} \Omega}\right)=0.5(0.96 \mathrm{~mA})=\underline{\underline{0.48 \mathrm{~mA}}}$
(b.) Simplifying the circuit for differential mode analysis gives the model shown.

$$
g_{m}=\frac{I_{C 1}}{V_{t}}=\frac{0.5 \mathrm{~mA}}{25 \mathrm{mV}}=20 \mathrm{mS}
$$

and

$$
\begin{aligned}
& r_{\pi}=\frac{\beta_{F}}{g_{m}}=100 \cdot 50=5 \mathrm{k} \Omega \\
& R_{i 1}=\left(v_{i d} / 2\right) / i_{b 1}=r_{\pi 1}=5 \mathrm{k} \Omega \\
& \frac{v_{C 1}}{v_{i d}}=\frac{1}{2} \frac{v_{C 1}}{v_{i d} / 2}=\frac{1}{2}\left(\frac{v_{C 1}}{i_{b 1}}\right)\left(\frac{i_{b 1}}{v_{i d} / 2}\right)=\frac{1}{2}\left(\frac{v_{C 1}}{i_{b 1}}\right)\left(\frac{1}{R_{i 1}}\right)=\frac{-\beta R_{C}}{2 R_{i 1}}=\frac{-100 \cdot 10 \mathrm{k} \Omega}{2 \cdot 5 \mathrm{k} \Omega}=-100 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

(c.) The simplifying circuit for the common mode analysis is shown.

$$
\begin{aligned}
& \frac{v_{C 1}}{v_{i d}}=\frac{1}{2} \frac{v_{C 1}}{v_{i d} / 2}=\frac{1}{2}\left(\frac{v_{C 1}}{i_{b 1}}\right)\left(\frac{i_{b 1}}{v_{i d} / 2}\right) \\
& =0.5\left(-\beta_{F} R_{C}\right)\left(\frac{1}{r_{\pi 1}+\left(1+\beta_{F}\right) R_{E E}}\right) \\
& =\left(\frac{0.5(-100 \cdot 10 \mathrm{k} \Omega)}{5 \mathrm{k} \Omega+(101 \cdot 10 \mathrm{k} \Omega)}\right)=-\underline{\underline{-0.493} \mathrm{~V} / \mathrm{V}}
\end{aligned}
$$

F04Q07S1
(d.) $R_{i d}=\frac{v_{i d}}{i_{i n}}=\left(\frac{2}{2}\right) \frac{v_{i d}}{i_{b 1}}=2 \frac{v_{i d} / 2}{i_{b 1}}=2 R_{i d}=2(5 \mathrm{k} \Omega)=\underline{\underline{10 \mathrm{k} \Omega}}$

