QUIZ NO. 1 - SOLUTION

(Average score $=6.9 / 10$ of those taking the quiz)
If $\beta_{F}=100$ and $V_{B E Q}=0.6 \mathrm{~V}$, solve for the dc values of I_{B}, $I_{C}, I_{E}, V_{B} . V_{C}$. and V_{E} of the transistor circuit shown.

Solution

The first step is to find a Thevenin equivalent circuit seen from the base to ground. This circuit is shown below where
$V_{B B}=\frac{10 \cdot R_{1}}{R_{1}+R_{2}}=5 \mathrm{~V} \quad$ and $\quad R_{B}=R_{1} \| R_{2}=50 \mathrm{k} \Omega$

The base current, I_{B}, can be found from the base-emitter voltage loop.

$$
\begin{aligned}
& V_{B B}=I_{B} R_{B}+V_{B E Q}+I_{B}\left(1+\beta_{F}\right) R_{E} \rightarrow I_{B}=\frac{V_{B B}-0.6}{R_{B}+\left(1+\beta_{F}\right) R_{E}}=\frac{4.4 \mathrm{~V}}{151 \mathrm{k} \Omega}=\underline{29.14 \mu \mathrm{~A}} \\
\therefore & I_{C}=\beta_{F} I_{B}=\underline{\underline{2.914 \mathrm{~mA}}} \text { and } I_{E}=I_{C}+I_{B}=\underline{\underline{2.943 \mathrm{~mA}}}
\end{aligned}
$$

The voltages of the transistor can be found as follows.

$$
\begin{aligned}
& V_{C}=10 \mathrm{~V}-I_{C} R_{C}=10-2.914 \mathrm{~mA} \cdot 2 \mathrm{k} \Omega=10-5.83=\underline{4.17 \mathrm{~V}} \\
& V_{E}=I_{E} R_{E}=2.942 \mathrm{~mA} \cdot 1 \mathrm{k} \Omega=\underline{2.942 \mathrm{~V}} \\
& V_{B}=V_{E}+V_{B E Q}=2.942+0.6=\underline{\underline{3.543 \mathrm{~V}}}
\end{aligned}
$$

