FINAL EXAMINATION - SOLUTIONS

(Average score $=78 / 100$)
Problem 1-(20 points - This problem must be attempted)

The simplified schematic of a feedback amplifier is shown. Assume that all transistors are matched and $g_{m}=1 \mathrm{~mA} / \mathrm{V}$ and $r_{d s}=\infty$. (a.) Where should the switch be connected for negative feedback? (b.) Use the method of feedback analysis to find $v_{2} / v_{1}, R_{\text {in }}=$ v_{1} / i_{1}, and $R_{\text {out }}=v_{2} / i_{2}$.

Solution

(a.) A quick check of the ac voltage changes around the loop show that the
 switch should be connected to A.
(b.) This feedback circuit is series-series. The units of A are A / V and the units of β are V/A.

$$
F=z_{12 \mathrm{f}}=\frac{v_{1 \mathrm{f}}}{i_{2 \mathrm{f}} i_{1 \mathrm{f}}=0}=R_{3}=1 \mathrm{k} \Omega
$$

The circuit for calculating the small-signal open-loop gain is,

$$
\begin{aligned}
& A=\frac{i_{o}{ }^{\prime}}{v_{s}{ }^{\prime}}=\left(\frac{i_{o}{ }^{\prime}}{v_{g s 3}}\right)\left(\frac{v_{g s 3^{\prime}}}{v_{g 3^{\prime}}}\right)\left(\frac{v_{g 3^{\prime}}}{v_{g s 1^{\prime}}}\right)\left(\frac{v_{g s 1^{\prime}}}{v_{s}^{\prime}}\right)=\left(-g_{m 3}\right)\left(\frac{1}{1+g_{m 3} R_{4}}\right)\left(-g_{m 1} R_{2}\right)\left(\frac{1}{2}\right) \\
& A=\frac{i_{o}{ }^{\prime}}{v_{s}^{\prime}}=(1 \mathrm{mS})(0.5)(5)=2.5 \mathrm{mS} \rightarrow A_{F}=\frac{i_{o}}{v_{s}}=\frac{A}{1+A F}=\frac{2.5 \mathrm{mS}}{1+2.5 \cdot 1}=0.714 \mathrm{mS} \\
& \frac{v_{2}}{v_{1}}=\frac{v_{2}}{v_{s}}=\left(\frac{v_{2}}{i_{o}}\right)\left(\frac{i_{o}}{v_{s}}\right)=-R_{4}(0.714 \mathrm{mS})=-0.714 \mathrm{~V} / \mathrm{V} \quad \frac{v_{2}}{v_{s}^{\prime}}=-0.714 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

R_{1} is not influenced by feedback so $\frac{v_{1}}{i_{1}}=R_{1}=1 \mathrm{k} \Omega$

$$
\begin{aligned}
& R_{o}=R_{4}+\left(1 / g_{m 3}\right)=1 \mathrm{k} \Omega+1 \mathrm{k} \Omega=2 \mathrm{k} \Omega \rightarrow R_{o F}=2 \mathrm{k} \Omega(1+2.5)=7 \mathrm{k} \Omega \\
& R_{\text {out }}=\frac{v_{2}}{i_{2}}=\left(R_{o F}-R_{4}\right)\left\|R_{4}=7 \mathrm{k} \Omega\right\| 1 \mathrm{k} \Omega=875 \Omega \frac{v_{2}}{i_{2}}=875 \Omega \\
& \hline
\end{aligned}
$$

Problem 2-(20 points - This problem must be attempted)

This problem deals with finding the open-loop gain and it application. The following questions are independent of each other.
(a.) Find the loop gain of the feedback circuit shown, $T(s)$, if the amplifier is an ideal voltage amplifier with a gain of K.
(b.) If $T(s)=\frac{s K R C}{s^{2} R^{2} C^{2}+2 R C s+1}$, find $f_{o s c}$ and the value of K necessary for oscillation.

(c.) If $T(s)$ has the following properties: $T(0)=10$ and two poles at $s=-100$, what is the phase margin of this feedback circuit?

Solution

(a.) Opening the loop gives,

$$
\begin{aligned}
& T(s)=\frac{V_{\text {out }}}{V_{\text {in }}}=\left(\frac{K R}{R+(1 / s C)}\right)\left(\frac{K(1 / s C)}{R+(1 / s C)}\right) \\
& =\frac{K^{2} R C s}{(s R C+1)(s R C+1)}=\frac{K^{2} R C s}{s^{2} R^{2} C^{2}+s 2 R C+1} \\
\therefore & \quad T(s)=\frac{K^{2} R C s}{s^{2} R^{2} C^{2}+s 2 R C+1}
\end{aligned}
$$

(b.) $T(s)=\frac{s K R C}{s^{2} R^{2} C^{2}+2 R C s+1} \quad \rightarrow \quad T(j \omega)=\frac{j \omega K R C}{-\omega^{2} R^{2} C^{2}+j \omega 2 R C+1}$
or $\quad T(j \omega)=\frac{j \omega K R C}{1-\omega^{2} R^{2} C^{2}+j \omega 2 R C}=1+\mathrm{j} 0 \Rightarrow \quad f_{o s c}=\frac{1}{2 \pi R C}$ and $K=2$
(c.) We could plot a Bode plot and estimate the phase margin or do the following:

$$
|T(j \omega)|=\frac{10}{1+\left(\frac{\omega}{100}\right)^{2}}
$$

Find the unity-gain frequency from, $\frac{10}{1+\left(\frac{\omega_{c}}{100}\right)^{2}}=1 \rightarrow \omega_{c}^{2}=100^{2}(10-1)=300^{2}$
or $\omega_{c}=300 \mathrm{rads} / \mathrm{sec}$. The phase margin can be expressed as,
$P M=180^{\circ}-2 \tan ^{-1}\left(\frac{300}{100}\right)=180^{\circ}-2\left(71.56^{\circ}\right)=\underline{\underline{36.87^{\circ}}}$

Problem 3-(20 points - This problem is optional)

A BJT amplifier is shown. Assume that the BJT has the small signal parameters of $\beta_{F}=100, r_{\pi}=$ $1 \mathrm{k} \Omega$, and $V_{A}=\infty$.
a.) Find the midband voltage gain of this amplifier, $V_{\text {out }} / V_{\text {in }}$.
b.) Find the value of the lower -3 dB frequency, f_{L}, in Hz , using any method that is appropriate.

Solution

The small-signal model for this problem is:

(a.) If the capacitors are large, or the frequency large, the midband gain is,

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\left(\frac{V_{\text {out }}}{I_{b}}\right)\left(\frac{I_{b}}{V_{\text {in }}}\right)
$$

$\frac{V_{\text {out }}}{V_{\text {in }}}=\left[-\beta\left(R_{2} \| R_{4}\right)\right]\left(\frac{1}{R_{1}+r_{\pi}}\right)=(-500)(0.5)=\underline{\underline{250 \mathrm{~V} / \mathrm{V}}}$
(b.) Since the capacitors are independent, let us choose the short-circuit time constant approach.

$$
\begin{aligned}
& R_{C 1}=R_{3}\left\|\left(\frac{R_{1}+r_{\pi}}{1+\beta}\right)=1\right\|\left(\frac{2}{101}\right) \mathrm{k} \Omega=19.42 \Omega \\
& \therefore \quad p_{1}=\frac{-1}{C_{1} R_{C 1}}=\frac{-1}{10^{-4} \cdot 19.42}=-515 \mathrm{rads} / \mathrm{sec} \\
& R_{C 2}=R_{2}+R_{2}=20 \mathrm{k} \Omega \\
& \therefore \quad p_{2}=\frac{-1}{C_{2} R_{C 2}}=\frac{-1}{10^{-7} \cdot 20 \mathrm{k} \Omega}=-500 \mathrm{rads} / \mathrm{sec}
\end{aligned}
$$

There is also a zero due to R_{3} and C_{1} given as $-1 /\left(R_{3} C_{1}\right)=-10 \mathrm{rads} / \mathrm{sec}$.
$\therefore \omega_{L} \approx \sqrt{515^{2}+500^{2}-2\left(10^{2}\right)}=717.65 \mathrm{rads} / \mathrm{sec}$. or $f_{-3 \mathrm{~dB}}=\underline{\underline{114.2 \mathrm{~Hz}}}$

Problem 4-(20 points - This problem is optional)

a.) If the g_{m} of the MOSFET is $0.1 \mathrm{~mA} / \mathrm{V}$, find the midband gain and the location of all zeros and poles of the circuit shown.
b.) If the amplifier above has two zeros at the origin and a pole at $-1 \mathrm{rads} / \mathrm{sec}$ and -4 rads/sec., what is the lower -3 dB frequency in Hz ?

Solution

1.) Small-signal model:

$$
\begin{gathered}
\frac{V_{\text {out }}}{V_{\text {in }}}=\left(\frac{g_{m}\left(1 / g_{m}\right) \| R_{s}}{\left(1 / g_{m}\right) \| R_{s}+R_{L}+\frac{1}{s C_{2}}} \times R_{L}\right)\left(\frac{R_{G}}{R_{G}+\frac{1}{s C_{2}}}\right)=\left(\frac{5 \mathrm{k}}{15 \mathrm{k}+\frac{1}{s C_{2}}}\right)\left(\frac{1 \mathrm{M}}{1 \mathrm{M}+\frac{1}{s C_{1}}}\right) \\
=\left(\frac{1}{3}\right)\left(\frac{s}{s+\frac{1}{15 \mathrm{k} C_{2}}}\right)\left(\frac{s}{s+\frac{1}{1 \mathrm{M} C_{1}}}\right)=\left(\frac{1}{3}\right)\left(\frac{s}{s+6.67}\right)\left(\frac{s}{s+1}\right)
\end{gathered}
$$

$\therefore \mathrm{MGB}=\underline{\underline{0.333}}$, two zeros at $\underline{\underline{0 \mathrm{rads}} / \mathrm{sec}}$. and poles at $\underline{\underline{-1 \mathrm{rad}} / \mathrm{sec}}$ and $\underline{\underline{-6.67 \mathrm{rads} / \mathrm{sec}}}$.
2.) $\omega_{L} \approx \sqrt{p_{1}^{2}+p_{2}^{2}-2\left(z_{1}^{2}+z_{2}^{2}\right)}=\sqrt{1^{2}+4^{2}-2(0)}=\sqrt{17}=4.123 \mathrm{rads} / \mathrm{sec}$.

$$
\therefore \quad f_{L}=\frac{4.123}{6.28}=\underline{\underline{0.656 ~ H z}}
$$

Problem 5-(20 points - This problem is optional)
The FET in the amplifier shown has $g_{m}=$ $1 \mathrm{~mA} / \mathrm{V}, r_{d}=\infty, C_{g d}=0.5 \mathrm{pF}$, and $C_{g s}=10 \mathrm{pF}$. (a.) Find the midband gain, $V_{o u t} / V_{i n}$. (b.) Find the upper -3 dB frequency, f_{H}, in Hz . (Note: You cannot use the Miller's theorem on this problem because there is no bridging capacitor.)

Solution

The small signal model for the high frequency range is shown where $R_{34}=R_{3} \| R_{4}=10 \mathrm{k} \Omega$.

Because the capacitors are independent, probably the best way to work this problem is by superposition (open-circuit time constants). Therefore,
$C_{g s}$:

$$
R_{C g s}=R_{1}\left\|R_{2}\right\|\left(1 / g_{m}\right)=1 \mathrm{~K}\|1 \mathrm{~K}\| 1 \mathrm{~K}=333 \Omega \rightarrow \omega_{C g s}=\frac{1}{C_{g s} \cdot 333 \Omega}=300 \mathrm{Mrads} / \mathrm{sec}
$$

$C_{g d}$:

$$
\begin{aligned}
& R_{C g d}=R_{34}=10 \mathrm{k} \Omega \rightarrow \omega_{C g d}=\frac{1}{C_{g d} \cdot 10 \mathrm{k} \Omega}=200 \mathrm{Mrads} / \mathrm{sec} . \\
\therefore & \omega_{H} \approx \frac{1}{\sqrt{\left(\frac{1}{300 \mathrm{Mrads} / \mathrm{sec}}\right)^{2}+\left(\frac{1}{200 \mathrm{Mrads} / \mathrm{sec}}\right)^{2}}}=166 \mathrm{Mrads} / \mathrm{sec} . \\
& f_{L}=26.48 \mathrm{MHz}
\end{aligned}
$$

The midband gain is given as

$$
\mathrm{MBG}=\left(\frac{R_{2} \| \frac{1}{g_{m}}}{R_{1}+R_{2} \| \frac{1}{g_{m}}}\right)\left(\frac{\left(g_{m} R_{3} R_{4}\right.}{R_{3}+R_{4}}\right)=\left(\frac{-0.5}{1.5}\right)(-10)=3.33 \mathrm{~V} / \mathrm{V}
$$

Problem 6-(20 points - This problem is optional).
A feedback amplifier is shown. Use the methods of feedback analysis to find the numerical values of $v_{2} / v_{1}, v_{1} / i_{1}$, and v_{2} / i_{2}. Assume that all transistors are matched and that $V_{t}=25 \mathrm{mV}, \beta($ of the BJT $)=100, I_{C 1}=I_{C 2}=$ $100 \mu \mathrm{~A}$, and $r_{o}=\infty$.

Solution

An open-loop version of the feedback amplifier is shown below.

$$
\begin{aligned}
& g_{m}=\frac{I_{C}}{25 \mathrm{mV}}=4 \mathrm{mS} \\
& \text { and } r_{\pi}=\frac{1+\beta}{g_{m}} \approx 25 \mathrm{k} \Omega
\end{aligned}
$$

The open-loop ac schematic is given as,

$$
\begin{aligned}
& \frac{v_{2}^{\prime}}{i_{1}{ }^{\prime}}=\left(\frac{v_{2}{ }^{\prime}}{i_{b 2^{\prime}}}\right)\left(\frac{i_{b 2^{\prime}}}{i_{b 1^{\prime}}}\right)\left(\frac{i_{b 1^{\prime}}}{i_{1}{ }^{\prime}}\right)=\left[(1+\beta)\left(R_{3} \| R_{4}\right)\right]\left(\frac{-\beta R_{2}}{R_{2}+r_{\pi 2^{2}}+(1+\beta)\left(R_{3} \| R_{4}\right)}\right)\left(\frac{R_{3}}{R_{3}+r_{\pi 1}}\right) \\
& =(101 \cdot 10 \mathrm{~K} \| 10 \mathrm{~K})\left(\frac{-100 \cdot 10 \mathrm{~K}}{540 \mathrm{~K}}\right)\left(\frac{-10 \mathrm{~K}}{10 \mathrm{~K}+25 \mathrm{~K}}\right)=(505 \mathrm{~K})(-1.852)(0.286)=-267.2 \mathrm{k} \Omega \\
& R_{T}=\frac{v_{2}{ }^{\prime}}{i_{1}{ }^{\prime}}=-267.2 \mathrm{k} \Omega \Rightarrow \frac{v_{2}}{i_{1}}=\frac{R_{T}}{1+F R_{T}}=\frac{-267.2 \mathrm{~K} \Omega}{1+26.72}=-9.64 \mathrm{k} \Omega \\
& R_{\text {in }}=R_{4}\left\|\left(r_{\pi 1}\right)=10 \mathrm{~K}\right\| 25 \mathrm{~K}=7.14 \mathrm{k} \Omega, R_{\text {inF }}=\frac{R_{\text {in }}}{1+F R_{T}}=\frac{7.14 \mathrm{k} \Omega}{27.72}=257 \Omega \\
& \therefore \frac{v_{1}}{i_{1}}=R_{1}+R_{i n F}=1000+257=\underline{\underline{1257 \Omega}} \frac{v_{2}}{v_{1}}=\frac{v_{2}}{i_{1}} \frac{i_{1}}{v_{1}}=\frac{-9.64 \mathrm{~K}}{1257}=\underline{\underline{-7.67 \mathrm{~V} / \mathrm{V}}} \\
& R_{\text {out }}=R_{3}\left\|R_{4}\right\|\left(\frac{r_{\pi 2}+R_{2}}{1+\beta}\right)=(10\|10\| 0.346) \mathrm{k} \Omega=324 \Omega \\
& \therefore \quad \frac{v_{2}}{i_{2}}=\frac{R_{\text {out }}}{1+F R_{T}}=\frac{324 \Omega}{27.72}=\underline{\underline{11.7 \Omega}}
\end{aligned}
$$

Problem 7 - (20 points, this problem is optional)

An $R C$ oscillator is shown. Express the frequency of oscillation of this circuit in terms of the components and evaluate. What is the value of the voltage amplifier gain, K, necessary for oscillation? In words, how is the amplitude of oscillation determined?

Solution

Open the loop as follows,

$$
\begin{aligned}
T(s) & =\frac{V_{x}}{V_{x}{ }^{\prime}}=\left(\frac{-K(1 / s C)}{R+(1 / s C)}\right)^{3}=\left(\frac{-K}{s C R+1}\right)^{3}=\frac{-K^{3}}{(s R C+1)^{3}} \\
= & =\frac{-K^{3}}{s^{3} R^{3} C^{3}+3 s^{2} R^{2} C^{2}+3 s R C+1}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& T(j \omega)=\frac{-K^{3}}{\left(1-3 \omega^{2} R^{2} C^{2}\right)+j \omega\left[3 R C-\omega^{2} R^{3} C^{3}\right]}=1+\mathrm{j} 0 \\
\therefore & 3 R C=\omega_{o s c}{ }^{2} R^{3} C^{3} \quad \rightarrow \quad \omega_{o s c}=\frac{\sqrt{3}}{R C}
\end{aligned}
$$

$$
\text { and } \frac{-K^{3}}{1-3 \omega_{o s c}{ }^{2} R^{2} C^{2}}=\frac{-K^{3}}{1-9}=\frac{K^{3}}{8}=1 \quad \rightarrow \quad K=8^{1 / 3}=2 \quad K=2
$$

Substituting the values gives $f_{\text {osc }}=\frac{\sqrt{3}}{2 \pi \cdot 10^{5} \cdot 10^{-8}}=\underline{\underline{275.67 \mathrm{~Hz}(1,732 \mathrm{rads} / \mathrm{sec})}}$
The amplitude of the oscillation is determined by the amplifiers K having a nonlinear transfer function as illustrated. The slope for small values is greater than 2 while the slope for large values is less than 2 . The amplitude of the oscillator will stabilize where the effective gain is exactly 2 .

