Homework Assignment No. 1 - Solutions

Problem 1

(a.) The first thing to do is to find Thevenin's equivalent circuit seen from the diode.

The Thevenin voltage is,

$$
V_{T H}=V_{I N}\left(\frac{2}{3}-\frac{1}{3}\right)=\frac{V_{I N}}{3}
$$

The Thevenin resistance is,

$$
R_{T H}=1 \mathrm{k} \Omega\|2 \mathrm{k} \Omega+1 \mathrm{k} \Omega\| 2 \mathrm{k} \Omega=\frac{4}{3} \mathrm{k} \Omega
$$

The equivalent circuit now becomes,
Now, with $V_{I N}=10 \mathrm{~V}$, we know the diode is forward biased. Therefore, replacing it with a short-circuit gives,

$$
V_{D}=\underline{\underline{0 V}} \text { and } I_{D}=\frac{10}{3} \times \frac{3}{4 \mathrm{k} \Omega}=\underline{2.5 \mathrm{~mA}}
$$

(b.) With $V_{I N}=-10 \mathrm{~V}$, we know the diode is reverse biased. Therefore replacing it with an open-circuit gives,

$$
V_{D}=\underline{\underline{-3.33 \mathrm{~V}}} \text { and } I_{D}=\underline{\underline{0 \mathrm{~mA}}}
$$

Problem 2

An enhancement NMOS amplifier is shown. The following questions are independent of each other (i.e. the answer of one is not used in the next question).
(a.) If $I_{D}=0.5 \mathrm{~mA}, V_{T}=1 \mathrm{~V}$, and $K=$ $0.5 \mathrm{~mA} / \mathrm{V}$, find g_{m}.
(b.) If $g_{m}=0.5 \mathrm{~mA} / \mathrm{V}$ and $r_{o}=\infty$, find an algebraic expression for $R_{o u t}$ and $A_{v}=$ $v_{\text {out }} / v_{\text {in }}$.

(c.) Design R_{D} and R_{S} to give $R_{\text {out }}=10 \mathrm{k} \Omega$ and $A_{v}=-10 \mathrm{~V} / \mathrm{V}$ if $g_{m}=2 \mathrm{~mA} / \mathrm{V}$ and $r_{o}=\infty$.

Solution
a.) $g_{m}=\sqrt{2 K I_{D}}=\sqrt{2 \cdot 500 \cdot 500} \mu \mathrm{~A}=707 \mu \mathrm{~S}=\underline{\underline{0.707 \mathrm{mS}}}$
b.) The corresponding small-signal model:

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{v_{\text {out }}}{v_{g s}} \frac{v_{g s}}{v_{\text {in }}}
$$

$$
\frac{v_{\text {out }}}{v_{g s}}=-g_{m}\left(R_{D} \| R_{L}\right)
$$

$$
v_{g s}=v_{g}-v_{s}=v_{i n}-\left(g_{m} R_{S} v_{g s}\right)
$$

which gives $\frac{v_{g s}}{v_{\text {in }}}=\frac{1}{1+g_{m} R_{S}} \quad \rightarrow \quad \frac{v_{\text {out }}}{v_{g s}}=\frac{-g_{m}\left(R_{D} \| R_{L}\right)}{1+g_{m} R_{S}}$ and $R_{\text {out }}=R_{D} \| R_{L}$
c.) $R_{\text {out }}=10 \mathrm{k} \Omega=R_{D}\left\|R_{L}=R_{D}\right\| 20 \mathrm{k} \Omega \quad \rightarrow \quad R_{D}=\underline{\underline{20 \mathrm{k}} \Omega}$

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=-10=\frac{-g_{m}\left(R_{D} \| R_{L}\right)}{1+g_{m} R_{S}}=\frac{-20}{1+\frac{R_{S}}{500}} \rightarrow \quad R_{S}=\underline{\underline{500 \Omega}}
$$

Problem 3

A pnp BJT circuit is shown. (a.) Find the dc values of I_{E}, I_{C}, I_{B}, V_{E}, V_{C} and V_{B} if $\beta=50$ and $V_{E B}$ (on) $=0.65 \mathrm{~V}$. (b.) For what value of R_{C} does the BJT become saturated? (Recall that saturation of a BJT corresponds to the $B E$ and $B C$ junctions forward biased.)

Solution

(a.) Note that $I_{E}=1 \mathrm{~mA} \quad \alpha_{F}=\frac{\beta_{F}}{1+\beta_{F}}=\frac{50}{51}=0.98$
$\therefore I_{C}=\alpha_{F} I_{E}=0.98 \cdot 1 \mathrm{~mA}=0.98 \mathrm{~mA} \Rightarrow I_{C}=0.98 \mathrm{~mA}$

$I_{B}=\frac{I_{C}}{\beta_{F}}=\frac{0.98 \mathrm{~mA}}{50}=19.6 \mu \mathrm{~A} \Rightarrow I_{B}=19.6 \mu \mathrm{~A}$
Now, $V_{B}=I_{B} \cdot 100 \mathrm{k} \Omega=1.96 \mathrm{~V} \Rightarrow V_{B}=1.96 \mathrm{~V}$
$V_{E}=V_{B}+V_{E B}(\mathrm{on})=1.96 \mathrm{~V}+0.65 \mathrm{~V}=2.61 \mathrm{~V} \Rightarrow V_{E}=2.61 \mathrm{~V}$
Finally, $V_{C}=-10 \mathrm{~V}+I_{C} \cdot 10 \mathrm{k} \Omega=-10 \mathrm{~V}+0.98 \mathrm{~mA} \cdot 10 \mathrm{k} \Omega=-0.2 \mathrm{~V} \Rightarrow V_{C}=-0.2 \mathrm{~V} \approx 0 \mathrm{~V}$
(b.) Saturation occurs when $V_{B C}=0$ of $V_{B}=V_{C}$. Therefore, $V_{C}=1.96 \mathrm{~V}$. The current through R_{C} is still 0.98 mA , so solving for R_{C} gives,

$$
R_{C}=\frac{V_{C}+10 \mathrm{~V}}{I_{C}}=\frac{11.96 \mathrm{~V}}{0.98 \mathrm{~mA}}=12.20 \mathrm{k} \Omega \Rightarrow R_{C}=12.2 \mathrm{k} \Omega
$$

Problem 4

For the transistor shown, $\beta=100, \mathrm{r}_{\pi}=2.5 \mathrm{k} \Omega$, and $\mathrm{g}_{\mathrm{m}}=0.04 \mathrm{~S}$. Draw the small signal model and find the numerical values of the small signal voltage gain, $\mathrm{v}_{\text {out }} / \mathrm{v}_{\mathrm{in}}$, the input resistance, R_{in}, and the output resistance, $\mathrm{R}_{\text {out }}$.

Solution

Small-signal model:

$$
\begin{aligned}
& R_{\text {in }}=R_{S}+R_{E}\left\|\frac{r_{\pi}}{1+\beta}+R_{S}+R_{E}\right\| \frac{1}{g_{m}} \\
& R_{\text {in }}=1 \mathrm{k} \Omega+10 \mathrm{k} \Omega \| 25 \Omega=\underline{1024.9 \Omega} \\
& R_{\text {out }}=R_{C} \| R_{L}=\underline{\underline{5 k} \Omega}
\end{aligned}
$$

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{v_{\text {out }}}{v_{\text {be }}} \frac{v_{\text {be }}}{v_{\text {in }}}=\left[-g_{m}\left(R_{C} \| R_{L}\right)\right]\left(\frac{-\left(\frac{r_{\pi}}{1+\beta}\right)_{\| R_{E}}}{R_{S}+\left(\frac{r_{\pi}}{1+\beta}\right)_{\pi} \| R_{E}}\right)=\left[-g_{m}\left(R_{C} \| R_{L}\right)\right]\left(\frac{-\left(\frac{1}{g_{m}}\right) \| R_{E}}{\left.R_{S}+\left(\frac{1}{g_{m}}\right)\right)_{\pi} \| R_{E}}\right)
$$

$$
=(-40 \cdot 3.33)\left(\frac{-24.9}{1024.9}\right)=\underline{+3.24 \mathrm{~V} / \mathrm{V}}
$$

Problem 5

The following questions give the dc voltages at the terminals of an active device. You are to calculate the designated dc current.
a.) Find the diode current, I_{D}, where $I_{S}=100 \mathrm{fA}$ and $V_{T}=0.025 \mathrm{~V}(2 \mathrm{pts})$.

Obviously, the diode is forward biased. Therefore,

$$
I_{D}=I_{S} \exp \left(\frac{V_{D}}{V_{T}}\right)=10^{-13} \exp \left(\frac{0.6}{0.025}\right)=\underline{\underline{2.65 \mathrm{~mA}}}
$$

b.) Find the drain-source current, $I_{D S}$, where $K_{n}{ }^{\prime}=25 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}=1 \mathrm{~V}$ and $W / L=10(2 \mathrm{pts})$.
We see that the enhancement, n-channel MOSFET is in the saturation region. Therefore,

$$
I_{D S}=\frac{K_{n}{ }^{\prime} W}{2 L},\left(V_{G S}-V_{T N}\right)^{2}=\frac{25 \cdot 10}{2}(2-1)^{2}=\underline{125} \underline{\mu \mathrm{~A}}
$$

c.) Find the collector, emitter, and base currents, I_{C}, I_{E}, and I_{B} if $I_{S}=$ $100 \mathrm{fA}, V_{T}=0.025 \mathrm{~V}$ and $\beta_{F}=100(4 \mathrm{pts})$.

We see that the npn BJT is in the forward active region. Therefore,

$$
\begin{aligned}
& I_{C}=I_{S} \exp \left(\frac{V_{B E}}{V_{T}}\right)=10^{-13} \exp \left(\frac{0.7}{0.025}\right)=\underline{144.6 \mathrm{~mA}} \\
& I_{B}=\frac{I_{C}}{\beta_{F}}=\underline{\underline{1.446 \mathrm{~mA}} \quad \text { and } \quad I_{E}=I_{C}+I_{B}=\underline{146 \mathrm{~mA}}}
\end{aligned}
$$

d.) Repeat (b.) if $V_{D}=1 \mathrm{~V}$ and $V_{G}=3 \mathrm{~V}(2 \mathrm{pts})$.

We see that the enhancement, n -channel MOSFET is in the linear region. Therefore,

$$
I_{D S}=K_{n}, \frac{W}{L}\left(V_{G S}-V_{T N}-\frac{V_{D S}}{2}\right) V_{D S}=25 \cdot 10(3-1-0.5)(1)=\underline{\underline{375} \mu \mathrm{~A}}
$$

