Homework Assignment No. 1

Due on Monday, January 12, 2004

1.) (a.) Find the dc current, I_{DQ} , and the dc voltage, V_{DQ} , of the diode in the circuit shown if V_{IN} is +10V. Assume the large signal model for the diode is a short circuit when $v_D \ge 0V$ and an open circuit when $v_D \le 0V$. (b.) Repeat part (a.) if $V_{IN} = -10V$.

2.) An enhancement NMOS amplifier is shown. The following questions are independent of each other (i.e. the answer of one is *not* used in the next question).

(a.) If $I_D = 0.5$ mA, $V_T = 1$ V, and K = 0.5mA/V, find g_m .

(b.) If $g_m = 0.5$ mA/V and $r_o = \infty$, find an algebraic expression for R_{out} and $A_v = v_{out}/v_{in}$.

(c.) Design R_D and R_S to give $R_{out} = 10k\Omega$ and $A_v = -10V/V$ if $g_m = 2mA/V$ and $r_o = \infty$.

3.) A pnp BJT circuit is shown. (a.) Find the dc values of I_E , I_C , I_B , V_E , V_C and V_B if $\beta = 50$ and $V_{EB}(\text{on}) = 0.65$ V. (b.) For what value of R_C does the BJT become saturated? (Recall that saturation of a BJT corresponds to the *BE* and *BC* junctions forward biased.)

4.) For the transistor shown, $\beta = 100$, $r_{\pi} = 2.5k\Omega$, and $g_m = 0.04S$. Draw the small signal model and find the numerical values of the small signal voltage gain, v_{out}/v_{in} , the input resistance, R_{in} , and the output resistance, R_{out} .

 $2 k\Omega$

 V_{B}

R_B= 100kΩ 1kΩ

+10V

1mA

-o V_E

o V_C

 $\beta_F = 50$

10kΩ

5.) The following questions give the dc voltages at the terminals of an active device. You are to calculate the designated dc current.

a.) Find the diode current, I_D , where $I_S = 100$ fA and $V_T = 0.025$ V (2 pts). + 0.6V I_D F02Q01P1A

b.) Find the drain-source current,
$$I_{DS}$$
, where $K_n' = 25\mu A/V^2$, $V_{TN} = 1V$
and $W/L = 10$ (2 pts).

c.) Find the collector, emitter, and base currents, I_C , I_E , and I_B if $I_S = 100$ fA, $V_T = 0.025$ V and $\beta_F = 100$ (4 pts).

d.) Repeat (b.) if $V_D = 1$ V and $V_G = 3$ V (2 pts).