Homework Assignment No. 1

Due on Monday, January 12, 2004
1.) (a.) Find the dc current, $I_{D Q}$, and the dc voltage, V_{DQ}, of the diode in the circuit shown if V_{IN} is +10 V . Assume the large signal model for the diode is a short circuit when $\mathrm{v}_{\mathrm{D}} \geq 0 \mathrm{~V}$ and an open circuit when $\mathrm{v}_{\mathrm{D}} \leq$ 0 V . (b.) Repeat part (a.) if $\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V}$.

2.) An enhancement NMOS amplifier is shown. The following questions are independent of each other (i.e. the answer of one is not used in the next question).
(a.) If $I_{D}=0.5 \mathrm{~mA}, V_{T}=1 \mathrm{~V}$, and $K=$ $0.5 \mathrm{~mA} / \mathrm{V}$, find g_{m}.
(b.) If $g_{m}=0.5 \mathrm{~mA} / \mathrm{V}$ and $r_{o}=\infty$, find an algebraic expression for $R_{o u t}$ and $A_{v}=$
 $v_{\text {out }} / v_{i n}$.
(c.) Design R_{D} and R_{S} to give $R_{\text {out }}=10 \mathrm{k} \Omega$ and $A_{v}=-10 \mathrm{~V} / \mathrm{V}$ if $g_{m}=2 \mathrm{~mA} / \mathrm{V}$ and $r_{o}=\infty$.
3.) A pnp BJT circuit is shown. (a.) Find the dc values of I_{E}, I_{C}, I_{B}, V_{E}, V_{C} and V_{B} if $\beta=50$ and $V_{E B}($ on $)=0.65 V$. (b.) For what value of R_{C} does the BJT become saturated? (Recall that saturation of a BJT corresponds to the $B E$ and $B C$ junctions forward biased.)

4.) For the transistor shown, $\beta=100, \mathrm{r}_{\pi}=2.5 \mathrm{k} \Omega$, and $g_{m}=0.04 \mathrm{~S}$. Draw the small signal model and find the numerical values of the small signal voltage gain, $\mathrm{v}_{\text {out }} / \mathrm{v}_{\mathrm{in}}$, the input resistance, R_{in}, and the output resistance, $\mathrm{R}_{\text {out }}$.

5.) The following questions give the dc voltages at the terminals of an active device. You are to calculate the designated dc current.
a.) Find the diode current, I_{D}, where $I_{S}=100 \mathrm{fA}$ and $V_{T}=0.025 \mathrm{~V}(2 \mathrm{pts})$.

b.) Find the drain-source current, $I_{D S}$, where $K_{n}{ }^{\prime}=25 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{T N}=1 \mathrm{~V}$ and $W / L=10(2 \mathrm{pts})$.

c.) Find the collector, emitter, and base currents, I_{C}, I_{E}, and I_{B} if $I_{S}=$ $100 \mathrm{fA}, V_{T}=0.025 \mathrm{~V}$ and $\beta_{F}=100(4 \mathrm{pts})$.

F02Q01P1C
d.) Repeat (b.) if $V_{D}=1 \mathrm{~V}$ and $V_{G}=3 \mathrm{~V}(2 \mathrm{pts})$.

