Homework Assignment No. 5

Due on Monday, February 9, 2004

Problems in () refer to the first edition of the text.

1.) An NPN BJT common-emitter inverting amplifier is shown. Assume the parameters of the transistor are \(\beta_F = 100 \), \(V_T = 25\text{mV} \), and \(V_A = 100V \). (a.) If \(I_C = 0.5\text{mA} \) and \(V_{CE} = 3V \), find the small signal model parameter values for \(g_m \), \(r_\pi \), and \(r_o \). (b.) Find an algebraic expression for the small signal voltage gain, \(v_{out}/v_{in} \). (c.) Numerically evaluate the small signal voltage gain, \(v_{out}/v_{in} \).

2.) Problem 13.102 (13.91) of the text.

3.) Problem 13.111 (13.100) of the text. \([A_v = -4.60 \text{ V/V}]\)

4.) Problem 13.118 (13.108) of the text.

5.) A PMOS common-drain amplifier is shown. Assume the parameters of the transistor are \(k_F = 0.5\text{mA/V}^2 \), \(V_{TP} = -1V \), and \(\lambda = 0 \). (a.) If \(I_{SD} = 0.5\text{mA} \), find the small signal model parameter values for \(g_m \) and \(r_o \). (b.) Find an algebraic expression for the small signal input resistance, \(R_{in} \), the output resistance, \(R_{out} \), and the voltage gain, \(v_{out}/v_{in} \). (c.) Numerically evaluate the small signal input resistance, \(R_{in} \), the output resistance, \(R_{out} \), and the voltage gain, \(v_{out}/v_{in} \).