EFFECT OF THE DIODE FORWARD VOLTAGE DROP:

\[V_0 = U_2 - V_D \]

THE USE OF OP-AMPS FOR RECTIFICATION - "THE SUPER-DIODE"

\[A_V \neq \infty \]

\[U_0 = VA - V_D \]

\[VA = A_V \times (U_2 - U_0) \]

\[U_0 = A_V (U_2 - U_0) - V_D \]
\[V_o (1+Av) = Av V_i - V_d \]

\[\Rightarrow V_o = \frac{Av}{1+Av} V_i - \frac{V_d}{1+Av} \]

As \(Av \to \infty \), \(V_o = V_i \)

PRINCIPLE:

![Diagram showing a circuit with input \(V_i \), output \(V_o \), feedback loop, and unwanted signal.]
"PRECISION DIODE - PRACTICAL OP-AMP"

RECTIFIER:

In the previous CFI the loop is open for \(V_I < 0 \).

\[V_I < 0 \quad V_A > 0 \Rightarrow D1 \text{ on, } D2 \text{ off} \]

\[V_0 = V_A - V_{ON} = -A_u V_I - V_{ON} \]

\[V_I = \frac{R_2}{R_1 + R_2} V_I + \frac{R_1}{R_1 + R_2} V_0 \]
\[U_0 = -A_I \left(\frac{R_2}{R_1+R_2} U_I + \frac{R_1}{R_1+R_2} U_0 \right) - V_{on} \]

\[U_0 \left\{ 1 + \frac{A_I R_1}{R_1+R_2} \right\} = -A_I \frac{R_2}{R_1+R_2} U_I - V_{on} \]

\[U_0 = \left(-A_I \frac{R_2}{R_1+R_2} \right) U_I - \frac{V_{on}}{1 + \frac{A_I R_1}{R_1+R_2}} \]

\[\lim_{A_I \to 0} \frac{U_0}{U_I} = -\frac{R_2}{R_1} U_I \]