QUIZ NO. 5

(Average score $=7.5 / 10$ for those taking the quiz.)
An NPN BJT common-emitter inverting amplifier is shown. Assume the parameters of the transistor are $\beta_{o}=100, V_{T}=25 \mathrm{mV}$, and $V_{A}=$ 100 V . (a.) If $I_{C}=0.5 \mathrm{~mA}$ and $V_{C E}=3 \mathrm{~V}$, find the small signal model parameter values for g_{m}, r_{π}, and r_{0}. (b.) Find the numerical value for the small signal voltage gain, $v_{\text {out }} / v_{i n}$, the input resistance, $R_{i n}$, and the output resistance, $R_{\text {out }}$. Assume $r_{o}=\infty$ in this part of the problem.

Solution

(a.) $g_{m}=\frac{I_{C}}{V_{T}}=\frac{0.5 \mathrm{~mA}}{25 \mathrm{mV}}=\underline{\underline{20 \mathrm{mS}}}$

$$
r_{\pi}=\beta_{F} \frac{V_{T}}{I_{C}}=\frac{100}{20 \mathrm{mS}}=\underline{\underline{\mathrm{k} \Omega}} \quad r_{o}=\frac{V_{A}+V_{C E}}{I_{C}}=\frac{102}{0.5 \mathrm{~mA}}=\underline{\underline{204 \mathrm{k} \Omega}}
$$

(b.) The small signal model for this problem is shown (note a current controlled generator has been chosen for this problem).

Using the BE impedance reflection principle we get,

$$
\begin{aligned}
& R_{\text {in }}=r_{\pi}+\left(1+\beta_{o}\right) R_{E} \\
& \quad=5 \mathrm{k} \Omega+(101) 1 \mathrm{k} \Omega=\underline{\underline{106 \mathrm{k} \Omega}}
\end{aligned}
$$

($R_{B}=R_{1} \| R_{2}$ is not part of this because it is in parallel with $v_{i n}$ and is not a part of $R_{i n}$.)

$$
\begin{aligned}
& R_{\text {out }}=R_{C}=10 \mathrm{k} \Omega \\
& \frac{v_{\text {out }}}{v_{\text {in }}}=\left(\frac{v_{\text {out }}}{i_{b}}\right)\left(\frac{i_{b}}{v_{\text {in }}}\right)=\left(-\beta_{o} R_{C}\right)\left(\frac{1}{R_{\text {in }}}\right)=\frac{-100 \cdot 10 \mathrm{k} \Omega}{106 \mathrm{k} \Omega}=\underline{-9.434 \mathrm{~V} / \mathrm{V}}
\end{aligned}
$$

