QUIZ NO. 8

(Average $=6.7 / 10$ of those taking the quiz)
a.) If the g_{m} of the MOSFET is $0.1 \mathrm{~mA} / \mathrm{V}$, find the midband gain and the location of all zeros and poles of the circuit shown.
b.) If the amplifier above has two zeros at the origin and a pole at $-10 \mathrm{rads} / \mathrm{sec}$ and -40 rads $/ \mathrm{sec}$., what is the lower -3 dB frequency in Hz ?

Solution

a.) It is worthwhile to spend some effort in simplifying the small-signal model as follows:

Thus, the MBG $=\left(\frac{g_{m} R_{D} R_{L}}{R_{D}+R_{L}}\right)\left(\frac{1}{1+g_{m} R_{S}}\right)=(0.5)(1 / 1 / 1)=\underline{\underline{0.4545 \mathrm{~V} / \mathrm{V}}}$
There are two zeros at $s=0$ and two poles:

$$
\begin{aligned}
& p_{2}=\frac{-1}{C_{2}\left(R_{D}+R_{L}\right)}=-50 \mathrm{rads} / \mathrm{sec} . \text { and } \\
& p_{1}=\frac{-g_{m}}{C_{1}\left(1+g_{m} R_{S}\right)}=\frac{-0.1 \times 10^{-3}}{10 \times 10^{-6}(1+0.1)}=-9.09 \mathrm{rads} / \mathrm{sec} .
\end{aligned}
$$

b.) $\omega_{L} \approx \sqrt{p_{1}^{2}+p_{2}^{2}-2\left(z_{1}^{2}+z_{2}^{2}\right)}=\sqrt{10^{2}+40^{2}-2(0)}=\sqrt{1700}=41.23 \mathrm{rads} / \mathrm{sec}$.
$\therefore \quad f_{L}=\frac{41.23}{6.28}=\underline{\underline{6.56 ~ H z}}$

