QUIZ NO. 10 - SOLUTIONS

(Average score $=6.4 / 10$ of those taking the quiz.)
The FET in the amplifier shown has $g_{m}=$ $1 \mathrm{~mA} / \mathrm{V}, r_{d}=\infty, C_{g d}=0.5 \mathrm{pF}$, and $C_{g s}=$
10 pF . (a.) Find the midband gain, $V_{\text {out }} / V_{i n}$.
(b.) Find the upper -3 dB frequency, f_{H}, in Hz.

Solution

(a.) The small-signal model for this problem is given below.

The MBG is given as

$$
\begin{aligned}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\left(\frac{V_{\text {out }}}{V_{g s}}\right)\left(\frac{V_{g s}}{V_{g}}\right)\left(\frac{V_{g}}{V_{\text {in }}}\right) \\
& =\left(-g_{m} R_{3}\right)\left(\frac{1}{1+g_{m} R_{4}}\right)\left(\frac{R_{G}}{R_{G}+R_{S}}\right) \\
& =(-20)(0.5)(0.999)=-\underline{-9.9 \mathrm{~V} / \mathrm{V}}
\end{aligned}
$$

(b.) Both the direct analysis and the Millers method are not attractive for this problem. The direct method is too complicated and because of R_{4}, the Miller capacitance is not in parallel with $C_{g s}$. Therefore, we will use the OTC method.
$R_{c g s}:$ From the model shown to the right we write,

$$
\begin{aligned}
& V_{t}=I_{t}\left(R_{S} \| R_{G}\right)+\left(I_{t}-g_{m} V_{t}\right) R_{4} \\
\therefore & R_{c g s}=\frac{R_{S} \| R_{G}+R_{4}}{1+g_{m} R_{4}}=\frac{2.001 \mathrm{k} \Omega}{2}=1 \mathrm{k} \Omega
\end{aligned}
$$

$R_{c g d O}$: From the model shown to the right we write,

$$
V_{t}=V_{g}+\left(I_{t}+g_{m} V_{g s}\right) R_{3}
$$

but $\quad V_{g s}=V_{g}-V_{s}=V_{g}-g_{m} V_{g s} R_{4}$
or $\quad V_{g s}=\left(\frac{1}{1+g_{m} R_{4}}\right) V_{g}$

$\therefore V_{t}=V_{g}+\left(\frac{g_{m} R_{3}}{1+g_{m} R_{4}}\right) V_{g}+I_{t} R_{3}=\left(\frac{1+g_{m} R_{3}}{1+g_{m} R_{4}}\right) V_{g}+I_{t} R_{3}=I_{t}\left(R_{S}^{\|} R_{G}\right)\left(\frac{1+g_{m} R_{3}}{1+g_{m} R_{4}}\right)+I_{t} R_{3}$
or $\quad R_{c g d O}=20 \mathrm{k} \Omega+0.999 \mathrm{k} \Omega\left(\frac{21}{2}\right)=30.49 \mathrm{k} \Omega$ (this was a tough one)
Finally,

$$
\omega_{H} \approx \frac{1}{R_{c g s} C_{g s}+R_{c d s} C_{g d}}=\frac{10^{9}}{1 \cdot 10+30.49 \cdot 0.5}=39.61 \mathrm{Mrads} / \mathrm{sec} \rightarrow \underline{\underline{6.30 \mathrm{MHz}}}
$$

