QUIZ NO. 11

(Average score $=8.1 / 10$ of those taking the quiz)
A series-shunt feedback amplifier is shown. Use the methods of feedback analysis to find the numerical values of $v_{2} / v_{1}, v_{1} / i_{1}$, and v_{2} / i_{2}. Assume that all transistors are matched and that $\beta=100, r_{\pi}=10 \mathrm{k} \Omega$ and $r_{o}=\infty$.

Solution

The circuit can redrawn as shown to identify more clearly the A circuit and the feedback circuit.

$F=h_{12 F}=\frac{v_{1 F}}{v_{2 F}} i_{1 F}=0=0.1(\mathrm{~V} / \mathrm{V})$
We really don't need to calculate $h_{11 F}$ and $h_{22 F}$ if we correctly
open the loop as illustrated below. The small-signal model for the open-loop calculation of A is,

$$
\begin{aligned}
& \text { (} \\
& A=\frac{v_{2}{ }^{\prime}}{v_{1}{ }^{\prime}}=\left(\frac{v_{2}{ }^{\prime}}{i_{b 2^{\prime}}}\right)\left(\frac{i_{b 2^{\prime}}}{i_{1}{ }^{\prime}}\right)\left(\frac{i_{1}{ }^{\prime}}{v_{1}{ }^{\prime}}\right)=\left[-\beta\left(R_{4} \| R_{1}+R_{3}\right)\right]\left(\frac{-\beta R_{2}}{r_{\pi 2}+R_{2}}\right)\left(\frac{1}{r_{\pi 1}+(1+\beta)\left(R_{1} \| R_{3}\right)}\right) \\
& =(-500 \mathrm{k} \Omega)(-50)\left(\frac{1}{10 \mathrm{k} \Omega+(101)(909)}\right)=245.53 \mathrm{~V} / \mathrm{V} \\
& \therefore \quad A_{F}=\frac{v_{2}}{v_{1}}=\frac{A}{1+A \beta}=\frac{245.53}{1+245.53(0.1)}=\frac{245.53}{25.553}=\underline{\underline{9.61 ~ \mathrm{~V} / \mathrm{V}}}
\end{aligned}
$$

The open-loop input resistance is $R_{i}=r_{\pi 1}+(1+\beta)\left(R_{1} \| R_{3}\right)=101.8 \mathrm{k} \Omega$

$$
\therefore \quad R_{\text {in }}=\frac{v_{1}}{i_{1}}=R_{i}(1+A F)=101.8 \mathrm{k} \Omega(25.553)=\underline{2.60 \mathrm{M} \Omega}
$$

The open-loop output resistance is $R_{o}=R_{4} \|\left(R_{1}+R_{3}\right)=5 \mathrm{k} \Omega$

$$
\therefore \quad R_{\text {out }}=\frac{\nu_{2}}{i_{2}}=\frac{R_{o}}{1+A F}=\frac{5 \mathrm{k} \Omega}{25.553}=\underline{\underline{196 \Omega}}
$$

