COURSE DETAILS AND INFORMATION FOR ECE4420 – Digital Integrated Circuits

Instructors: Dr. Phillip E. Allen, Room 292B, Van Leer, 894-6251 (office), pallen@ece.gatech.edu

Lecture: Monday, Wednesday, and Friday, 12:05am to 12:55am, Room C341, Van Leer

Office Hours: Allen: 2-3pm MW and 3-4pm F or by e-mail <pallen@ece.gatech.edu>.

Prerequisite: EE 3040 Microelectronic Circuits or permission of instructor.

Text:

Analysis and Design of Digital Integrated Circuits – Third Edition, David A. Hodges, Horace G. Jackson and Resve A. Saleh, McGraw-Hill, 2003.

Electronic Copies of Class Handouts: You may download pdf copies of all classroom material at the following web site: http://users.ece.gatech.edu/~pallen/Academic/

Objectives: The purpose of this course is to enable the student to model, analyze and design digital integrated circuits using primarily MOS technologies. At the conclusion of the course, the student should be able to successfully perform the electrical and physical design of digital circuit in an industrial environment.

Examinations: There will be three, closed book midterm examinations each of 50 minute duration and a 3 hour final examination. The final examination will be given during the regularly scheduled time for the final exam. All grades become final one week after they are returned in class.

Final Exam: The final exam is on Tuesday, April 27, 2004, from 8am to 10:50am.

Homework: Homework will be assigned and will be graded.

Course Grading Policy: Your grade will be determined using the following scheme:

Three midterm exams			
Homework	10%		
Final Exam	30%		

Grades will be assigned on a curve and will not necessarily be consistent with 100>A>90, 90>B>80, etc..

Computer Usage: You are expected to be able to use HSPICE or PSPICE for classroom assignments. Most assignments using the computer will work on the student version of PSPICE. The educational version of PSpice for the PC is free and downloadable from:

http://www.orcad.com/products/pspice/eval_f.htm

Attendance: You are responsible for all course materials, announcements, notes, etc. made during our regular class meeting times. Prompt arrival to class is appreciated.

Academic Honesty: It is the responsibility of the instructor to encourage an environment where you can learn and your accomplishments will be rewarded fairly. Any behavior that compromises the basic rules of academic honesty as described in the General Catalog will not be tolerated.

Classroom Behavior: Smoking, drinking and eating is prohibited in the classroom by Institute rules.

Weekly Coverage of Topics for ECE4420

Waalr	Lecture	Date	Tonio	Text
week	Lecture	Date	Topic	(pages)
	1	1/5	Review of Digital Logic Gate Design	6-15
1	2	1/7	Digital Integrated Circuit Design	15-24
	2 3	1/9	MOS Transistor	35-45
	4	1/12	Large Signal MOS Model	45-57
	5	1/14	Short Channel Technology	57-68
	6	1/16	Subthreshold Operation and MOS Capacitances	68-80
3	_	1/19	Holiday	-
	7	1/21	IC Fabrication Technology	89-96
	8	1/23	IC Fabrication Technology – Continued	96-107
	9	1/26	SPICE MOS Model	107-115
4	10	1/28	Additional effects in MOS Transistors	125-130
	11	1/30	MOS Inverters	143-153
	12	2/2	Resistive Load Inverter Design	153-161
5	13	2/4	Active Load Inverters	162-178
	-	2/6	Examination No. 1	-
	14	2/9	Psuedo MOS Inverters, Sizing, Tristate	178-185
6	15	2/11	CMOS Gate Inverters	195-209
	16	2/13	Complex CMOS Gates	209-214
	17	2/16	Flip-Flops	214-227
7	18	2/18	Power Dissipation in CMOS Gates	227-240
,	19	2/20	Switching Time Analysis	249-257
	20	2/23	Load Capacitance Calculation	257-267
8	21	2/25	Improving Delay	267-276
	22	2/27	Gate Sizing for Optimal Delay	276-300
	23	3/1	Transfer Gates	309-318
9	24	3/3	CMOS Transmission Gate Logic	318-333
	-	3/5	Examination No. 2	-
10		3/8-	Spring Break	
10		3/12		
	25	3/15	Dynamic D-Latches and D-Flip Flops/ Domino Logic	333-340
11	26	3/17	Domino Logic	340-349
	27	3/19	MOS Decoders	359-368
	28	3/22	Static RAM Cell Design	368-377
12	29	3/24	SRAM Column I/O Circuitry	377-390
	30	3/26	Memory Architecture	390-393
	31	3/29	CAM/FPGA	397-413
13	32	3/31	Dynamic Read-Write Memories, ROM	413-425
	33	4/2	EPROMs E ² PROMs	425-436
14	34	4/5	Interconnects	441-453
	35	4/7	Buffers, Interconnect Coupling Capacitance	453-468
	36	4/9	Inductance, Antenna	469-476
15	37	4/12	Power Distribution	483-499
	38	4/14	Clock and Timing Issues	499-514
	-	4/16	Examination No. 3	514-524
16	39	4/19	PLLs and DLLs	514-524
	40	4/21	BJTs	547-558
	41	4/23	BJT Logic	558-562
			Final Exam is Tuesday, April 27, 2004 from 8:00-10:50am	