Problem 1 - (25 points)

An NMOS transistor with a 10kΩ resistor as a load is used to implement a simple inverter as shown. The alpha-power model of Section 2.6 is used to fit the measured data for the NMOS transistor to produce the following two equations:

\[i_{DS} = \frac{W}{L} K_L (v_{GS} - V_{TN}) v_{DS} \quad v_{DS} \leq V_{DS\text{ (sat)}} \]

\[i_{DS} = \frac{W}{L} K_S (v_{GS} - V_{TN})^{1.5} \quad v_{DS} \geq V_{DS\text{ (sat)}} \]

where \(K_L = 100\mu A/V^2 \) and \(K_S = 100\mu A/V^{1.5} \) and \(V_{TN} = 0.6V \).

a.) Derive the expression for \(V_{DS\text{ (sat)}} \) assuming the model above.

b.) Design \(V_{DD} \) and \(\frac{W}{L} \) of the resistively loaded inverter above to achieve \(V_{OH} = 3.3V \) and \(V_{OL} = 0.3V \).

c.) For the inverter of part b.) derive an expression for \(V_{IL} \) using the given alpha-power model. Using the previous values, evaluate \(V_{IL} \).

Solution

a.) Equate the two equations for the linear and saturation regions to get,

\[\frac{W}{L} K_L (v_{GS} - V_{TN}) V_{DS\text{ (sat)}} = \frac{W}{L} K_S (v_{GS} - V_{TN})^{1.5} \]

\[\rightarrow V_{DS\text{ (sat)}} = \frac{K_S}{K_L} \sqrt{v_{GS} - V_{TN}} \]

b.) Since \(V_{OH} = V_{DD} \), let \(V_{DD} = 3.3V \). Solve for \(V_{OL} \) by assuming the MOSFET is in the linear region.

\[\frac{V_{DD} - V_{OL}}{R_L} = \frac{3.3-0.3}{10k\Omega} = 300\mu A = \frac{W}{L} K_L (V_{DD} - V_{TN}) V_{OL} = \frac{W}{L} 100\mu A/V^2(3.3-0.6)0.3 \]

\[\frac{W}{L} = \frac{300\mu A}{81\mu A} = 3.7 \]

c.) For \(V_{IL} \) assume the MOSFET is saturated. Therefore,

\[\frac{V_{DD} - V_{out}}{R_L} = \frac{W}{L} K_S (V_{in} - V_{TN})^{1.5} \]

Differentiating with respect to \(V_{in} \) gives,

\[\frac{1}{R_L} \frac{dV_{out}}{dV_{in}} = 1.5 \frac{W}{L} K_S (V_{in} - V_{TN})^{0.5} \rightarrow \frac{1}{R_L} = 1.5 (3.7) K_S (V_{IL} - V_{TN})^{0.5} \]

\[V_{IL} = V_{TN} + \frac{1}{[(1.5 \cdot (W/L)K_S R_L)^2]} = 0.6 + \frac{1}{(1.5 \cdot 3.7 \cdot 100 - 0.01)^2} \]

\[= 0.6 + 0.0325 = 0.6325V \]
Problem 2 – (25 points)

For the pseudo-NMOS load inverter shown using 0.18µm CMOS technology, determine V_{OH} and estimate V_{OL} using the velocity saturated model with effective mobility (high vertical field). Be sure to clearly state any assumptions used in estimating V_{OL}.

Solution

For this inverter, we know that $V_{OH} \approx V_{DD} = 1.8V$.

For V_{OL}, we need to assume the state of the transistors. To help in this calculate $V_{DS(sat)}$ for the NMOS and PMOS transistors.

PMOS: $V_{SD(sat)} = \frac{(V_{SG} - |V_{TP}|)E_{CP}L_P}{(V_{SG} - |V_{TP}|) + E_{CP}L_P} = \frac{(1.8 - 0.5)4.8}{(1.8 - 0.5) + 4.8} = 1.023V$

NMOS: $V_{DS(sat)} = \frac{(V_{GS} - |V_{TN}|)E_{CN}L_N}{(V_{GS} - |V_{TN}|) + E_{CN}L_N} = \frac{(1.8 - 0.5)1.2}{(1.8 - 0.5) + 1.2} = 0.624V$

So if $V_{OL} < 0.624V$, the PMOS is saturated and the NMOS is linear. Assuming this to be the case, we get:

$$W_n \frac{L_n}{L_n} \mu_e C_{ox} \left(V_{GS} - V_{TN} - \frac{V_{DS}}{2} \right) V_{DS} = W_{p} V_{sat} C_{ox} \frac{(V_{SG} - |V_{TP}|)^2}{(V_{SG} - |V_{TP}|) + E_{CP}L_P}$$

Assuming V_{DS} which is V_{OL} is small, we can simplify the above to,

$$W_n \frac{L_n}{L_n} \mu_e (V_{GS} - V_{TN}) V_{OL} = W_{p} V_{sat} \frac{(V_{SG} - |V_{TP}|)^2}{(V_{SG} - |V_{TP}|) + E_{CP}L_P}$$

Substituting the values gives,

$$270(cm^2/\mu m)(1.8-0.5)V_{OL} = 0.4x10^{-4}(cm)(8x10^6)(cm/s) \frac{(1.8-0.5)^2}{1.8-0.5+4.8}$$

$$351V_{OL} = 88.656 \quad \rightarrow \quad V_{OL} = 0.253V$$

This problem can also be solved exactly for V_{OL} as follows.

$$\frac{270(1.8-0.5-0.5V_{OL})V_{OL}}{1+V_{OL}/1.2} = (0.4x10^{-4})(8x10^6) \frac{(1.8-0.5)^2}{1.8-0.5+4.8} = 88.656$$

$$270(1.3-0.5V_{OL})V_{OL} = 88.656(1+0.833V_{OL})$$

$$351V_{OL} - 135V_{OL}^2 = 88.656 + 73.88V_{OL}$$

$$\therefore \quad 135V_{OL}^2 + (73.88-351)V_{OL} + 88.656 = 0 \quad \rightarrow \quad V_{OL}^2 - 2.053V_{OL} + 0.6567 = 0$$

$$V_{OL} = 1.0265 \pm 0.5\sqrt{2.053^2-4.0.6567} = 1.0265 \pm 0.5\sqrt{1.588} = 1.0265 \pm 0.6300$$

$$\therefore \quad V_{OL} = 0.3964V$$

Either answer will be accepted provided the work is correct and the assumptions consistent.
Problem 3 – (25 points)

The CMOS inverter shown uses 0.13µm CMOS technology.

a.) Sketch the voltage transfer characteristic of the standard CMOS inverter shown. Label the points on this curve that separate the various regions of operation for the MOSFETs. Estimate the location of these points as close as possible without numerical calculations.

b.) How far can the power supply, \(V_{DD} \), be reduced before the inverter fails to operate correctly?

c.) Sketch a graph of the dc current transfer characteristic versus the input voltage for the above inverter. Compute the peak value of current and label all important points along the characteristic.

Solution

a.) Assuming that \(V_S = 0.6 \text{V} \), the sketch of the voltage transfer characteristic is shown. (Actually, \(V_S \) can be calculated as 0.586V where \(\chi = 1.155 \))

PMOS:

\[
V_{SD(sat)} = \frac{(V_{SG} - |V_{TP}|)E_{CP}L_P}{(V_{SG} - |V_{TP}|) + E_{CP}L_P}
\]

\(V_{SD(sat)} = V_{SG} - |V_{TP}| \)

if \(V_{SG} - |V_{TP}| < E_{CP}L_P \)

This can be rewritten as,

\(V_{out} = V_{in} + |V_{TP}| \)

and is plotted on the curve.

A similar analysis gives,

\(V_{out} = V_{in} - V_{TN} \)

and is plotted on the curve.

b.) The lowest power supply voltage is \(V_{TN} = |V_{TP}| = 0.4 \text{V} \). Otherwise, one of the transistors would not turn on and the output could not be pulled to \(V_{DD} \) or ground. This answer ignores subthreshold.

c.) The sketch of the dc transfer current is shown on the sketch. It only flows when neither transistor is off. The peak value can be calculated assuming the transistors are in saturation.

\[
I_{DS(peak)} = W_pv_{sat}C_{ox} \frac{(V_{GS} - V_{TN})^2}{(V_{GS} - V_{TN}) + E_{CN}L_N} = \frac{(0.4x10^{-4})(8x10^6)(1.5x10^{-6})(0.2)^2}{0.2+0.6} = \frac{25.6 \mu \text{A}}{}
\]

(This assumes that \(V_{GS} = 0.6 \text{V} \). If we use \(V_{GS} = 0.586 \text{V} \) the current is 22.45µA)
Problem 4 – (25 points)

Using a complex CMOS logic, implement the function, $F = AB + C$. Assume that each input and its complement are available. Assuming all transistors have the same length, size the widths to implement the FO4 rules (the worst case pull-up and pull-down is identical to an inverter with $W_p = 2W$ and $W_n = W$). What is the value of W for this logic gate if $t_{PLH} = t_{PHL} = 50\text{ps}$, $L = 0.1\mu\text{m}$, and $C_L = 100\text{fF}$?

Solution

NMOS complex:

$$F = \overline{AB} + C = (\overline{A} + \overline{B})C$$

PMOS complex:

$$F = A \overline{B} + C$$ which is the dual of F

Therefore, the CMOS logic implementation is shown along with the sizing that satisfies the FO4 rules.

The value of W can be found as follows,

$$t_{PHL} = t_{PLH} = 50\text{ps} = 0.7R_{\text{eff}C_L}$$

$$50\text{ps} = 0.7R_{\text{eqn}(L/W)}C_L$$

$$= 0.7(12.5k\Omega)(L/W)100\text{fF}$$

$$\therefore \quad W/L = \frac{0.7\cdot 12.5\times 10^3\cdot 100\text{fF}}{50\text{ps}} = 17.5$$

$$W = 17.5(0.1\mu\text{m}) = 1.75\mu\text{m}$$