REVIEW FOR FINAL EXAMINATION

The Final Examination will be given Tuesday, April 27, 2004 from 8:00am to 10:50am. The exam is open book. The exam is open book and will consist of approximately 7 problems of which 5 problems, each worth 20 points for a total of 100 points, must be worked. The 7 problems will fall into two categories, those you must work and those you may work. Below is a list of the material for which you are responsible.

Deep Submicron Digital IC Design

Review of Digital Logic Gate Design

Basic logic functions

- DeMorgan's Laws
- Sequential Logic Circuits

Implementation of Logic Circuits

- Characteristics

Noise Margins

Propagation Delay Time

Power

- Static
- Dynamic

MOS Transistors

Structure and operation of MOSFETs

- Equivalent ON and OFF resistances

Threshold voltage of the MOSFET

- Equation (2.11) – its components and their meaning and the parameters of Eq. (2.11)

Development and application of the First-Order (Sah model) Current-Voltage

Characteristics

Development and application of the Velocity-Saturated Current-Voltage Model

Application and understanding of the Subthreshold Conduction Model

Capactances of the MOSFET

- Thin-oxide (intrinsic capacitances)
- PN-junction capacitances (depletion capacitances)
- Overlap capacitances (intrinsic capacitances)

The summary in Sec. 2.9 is key to this section – you must know these formulas, what they mean and how to apply them.

Fabrication, Layout and Simulation

IC Fabrication Technology

- What are the five major processing steps in IC technology? Also you should know about the epitaxial process
- Photolithography process what is it and how is it applied
- Know the physical aspects of the MOSFET cross-section
- Connections metal, vias, etc.

Calculation of capacitance and resistance of a conductor

Calculating the resistance and capacitance associated with the physical layout of a MOSFET Circuit simulation models for the MOSFET

SPICE – Level 1 model and parameters

Extraction of the level 1 model parameters

Temperature dependence of MOSFETs for the various regions of operation

Voltage limitations

Latchup

MOS Inverter Circuits

Voltage transfer characteristic – V_{OH} , V_{OL} , V_{IH} , V_{IL} , V_{S}

Noise Margins (Multiple source noise margin)

Resistive load inverter design - V_{OH}, V_{OL}, V_{IH}, V_{IL}, V_S

NMOS transistor load inverters -

Saturated enhancement load – design of W/Ls

Linear enhancement load – design of W/Ls

CMOS inverters

- DC analysis
- Five regions of operation
- Finding V_{OH} , V_{OL} , V_{IH} , V_{IL} , V_S

Pseudo-NMOS inverters - V_{OH} , V_{OL} , V_{IH} , V_{IL} , V_{S}

Sizing of inverters – how to find the W/L ratios given the load capacitance

Understand how to use R_{eqn} and R_{eqp} and what they represent

Static MOS Gate Circuits

CMOS Gate Circuits – Inverter, NANDn and NORn (n = number of inputs)

Basic CMOS gate sizing

Implications of fanin and fanout

Voltage transfer characteristics for CMOS gates

Complex CMOS gates – be able to use the procedures outlined to synthesis a CMOS gate given the logic function

XOR and XNOR gates

Multiplexer circuits

Flip-Flops and latches

- Bistable
- SR latch with NOR gates and with NAND gates

JK Flip-Flop

- JK Master-slave flip-flop
- JK Edge-triggered flip-flop

D Flip-Flops and Latches

Power dissipation in CMOS gates

- Dynamic power (ignore glitch power)
- Static power (ignore leakage and subthreshold)

Power and delay tradeoffs

High-Speed CMOS Logic Design

Switching time analysis – Inverter and gate delay calculations

Gate capacitance – how to calculate and use

Self capacitance – how to calculate and use

Wire capacitance – how to use

Gate sizing for optimal path delay

Relationships that give optimal delay

Figure 6.23 – meaning and application

Optimizing paths with inverters, NANDs or NORs

Optimizing paths using logic effort for general path delay optimization

Branching and sideloads

Transfer Gate and Dynamic Logic Design

CMOS Gate Circuits – Inverter, NANDn and NORn (n = number of inputs)

Characteristics and limitations

Clock feedthrough

Capacitive sharing

CMOS transmission gate logic, multiplexers

Delay of CMOS transmission gates

Logical effort with CMOS transmission gates

Dynamic D-latches and D Flip-flops

Domino (Dynamic) Logic

Design of domino logic functions

Limitations of domino logic

Differential domino logic

Power and delay tradeoffs

Semiconductor Memory Design

Memory organization

Types of memories

MOS decorders – single and multiple-level

SRAM cell design

Function of the transistors

Read operation

Write operation

SRAM column I/O circuitry

Pull-ups

Column selection

Write circuits

Read circuits – sense amplifiers, latches, combination of amplifier and latches

Interconnect Design

Interconnect RC delays

Wire resistance, wire capacitance

Elmore delay

RC delay in long wires

Buffer insertion to reduce delay in long wires

Interconnect coupling capacitance

Components

Models

Agressor-victim coupling

Interconnect inductance

Antenna effects

Power Grid and Clock Design

Power distribution

IR drop and Ldi/dt drop

Power routing

Clock and timing issues

Clock skew, influence of noise on the clocks

Power dissipation in clocks

Clock generation and distribution

Phase-locked loops/delay locked loops

PLL design