Homework No. 8 - Solutions

Problem 1-P6.6
For optimum sizing given four inverters.

$$
\begin{aligned}
P E & =\prod L E \times F O=(1)(1)(1)(1)(1200)=1200 \\
S E & =\sqrt[N]{P E}=\sqrt[4]{1200}=5.89 \\
C_{4} & =\frac{L E \times C_{\text {OUT }}}{S E}=\frac{1(1200)}{5.89}=203.89 \\
C_{3} & =\frac{L E \times C_{4}}{S E}=\frac{1(203.89)}{5.89}=34.64 \\
C_{2} & =\frac{L E \times C_{3}}{S E}=\frac{1(34.64)}{5.89}=5.89 \\
C_{1} & =\frac{L E \times C_{2}}{S E}=\frac{1(5.89)}{5.89}=1 \\
D & =\sum_{1}^{N}(L E \times F O+P)=\sum_{1}^{4}(S E+P)=4(5.89+0.5)=25.5
\end{aligned}
$$

For the number of devices for optimum delay, proceed as follows:

$$
\begin{aligned}
S E & =\sqrt[N]{P E} \\
S E^{N} & =P E \\
\log S E^{N} & =\log P E \\
N \log S E & =\log P E \\
\text { guess that } S E & \approx 4(F O 4 \quad \text { assumption }) \\
N & =\frac{\log P E}{\log S E}=\frac{\log 1200}{\log 4}=5.11
\end{aligned}
$$

Try $N=5,6,7$ and see which gives the smallest delay:

$$
\begin{aligned}
& N=5: \quad S E=\sqrt[N]{P E}=\sqrt[5]{1200}=4.12 \\
& D=\sum_{1}^{N}(L E \times F O+P)=\sum_{1}^{5}(S E+P)=5(4.12+0.5)=23.1 \\
& N=6: \quad S E=\sqrt[N]{P E}=\sqrt[6]{1200}=3.26 \\
& D=\sum_{1}^{N}(L E \times F O+P)=\sum_{1}^{6}(S E+P)=6(3.26+0.5)=22.6 \\
& N=7: \quad S E=\sqrt[N]{P E}=\sqrt[7]{1200}=2.75 \\
& D=\sum_{1}^{N}(L E \times F O+P)=\sum_{1}^{7}(S E+P)=7(2.75+0.5)=22.8
\end{aligned}
$$

Problem 1-P6.6-Continued

Therefore, $\mathrm{N}=6$ is gives the smallest delay. Use this to compute capacitance size.

$$
\begin{aligned}
& C_{7}=\frac{L E \times C_{O U T}}{S E}=\frac{1(1200)}{3.26}=368 \\
& C_{6}=\frac{L E \times C_{5}}{S E}=113 \\
& C_{4}=\frac{L E \times C_{5}}{S E}=34.6 \\
& C_{3}=\frac{L E \times C_{4}}{S E}=10.6 \\
& C_{2}=\frac{L E \times C_{3}}{S E}=3.26 \\
& C_{1}=\frac{L E \times C_{2}}{S E}=1
\end{aligned}
$$

These capacitances can be converted to widths by assigning $2 / 3$ of the capacitance to the PMOS device and $1 / 3$ to the NMOS device and then dividing by $2 \mathrm{fF} / \mathrm{um}$.
Problem 2-P6.9
a. $L E=\frac{5}{3}$
b. $L E=\frac{5}{3}$
c. $L E_{R}=\frac{8}{3}, L E_{F}=\frac{2}{3}$
d. $L E_{R}=\frac{4}{3}, L E_{F}=2$

Problem 3-P6.12

$$
\begin{aligned}
P E & =\prod L E \times F O \times B E=\left(\frac{5}{3}\right)\left(\frac{4}{3}\right)\left(\frac{6}{3}\right)(4)(1000)=17778 \\
S E & =\sqrt[N]{P E}=\sqrt[4]{17778}=11.55 \\
C_{4} & =\frac{L E \times C_{\text {OUT }} \times B E}{S E}=\frac{\left(\frac{6}{3}\right)(1000)(1)}{11.55}=173.21 \\
C_{3} & =\frac{L E \times C_{4} \times B E}{S E}=\frac{\left(\frac{5}{3}\right)(173.21)(1)}{11.55}=25 \\
C_{2} & =\frac{L E \times C_{3} \times B E}{S E}=\frac{\left(\frac{4}{3}\right)(25)(4)}{11.55}=11.55 \\
C_{1} & =\frac{L E \times C_{2} \times B E}{S E}=\frac{(1)(11.55)(1)}{11.55}=1 \\
D & =\sum_{1}^{N}\left(S E+P_{N}\right)=\sum_{1}^{4}\left(S E+P_{N}\right)=4(11.55)+0.5+1+1.5+2=51.2
\end{aligned}
$$

Problem 4-P6.13

$$
\begin{aligned}
& P E=\prod L E \times F O \times B E=(1)\left(\frac{4}{3}\right)\left(\frac{5}{3}\right)\left(\frac{7}{3}\right)(2)(2)(4)(8000)=667303 \\
& S E=\sqrt[N]{P E}=\sqrt[5]{663703}=14.6 \\
& C_{5}=\frac{L E \times C_{O U T} \times B E}{S E}=\frac{\left(\frac{6}{3}\right)(8000)(1)}{14.6}=1095.8 \\
& C_{4}=\frac{L E \times C_{5} \times B E}{S E}=\frac{\left(\frac{7}{3}\right)(1095)(1)}{14.6}=175.1 \\
& P E=\prod L E \times F O \times B E=(1)\left(\frac{4}{3}\right)\left(\frac{5}{3}\right)(2)(4 \times 175.1+500)=5335 \\
& S E=\sqrt[N]{P E}=\sqrt[3]{5335}=17.47 \\
& C_{3}=\frac{L E \times C_{4} \times B E}{S E}=\frac{\left(\frac{5}{3}\right)(1200)(1)}{17.5}=114.3 \\
& C_{2}=\frac{L E \times C_{3} \times B E}{S E}=\frac{\left(\frac{4}{3}\right)(114.3)(2)}{17.5}=17.5 \\
& C_{1}=\frac{L E \times C_{2} \times B E}{S E}=\frac{(1)(17.5)(1)}{17.5}=1 \\
& D=\sum_{1}^{N}\left(S E+P_{N}\right)=\sum_{1}^{5}\left(S E+P_{N}\right)=3(17.5)+2(14.6)+0.5+1+1.5+2.25+2=88.9
\end{aligned}
$$

To minimize the delay, a estimate of the number of needed stages can be performed :

$$
\begin{aligned}
S E & =\sqrt[N]{P E} \\
& \therefore N=\frac{\log P E}{\log S E}=\frac{\log 663704}{\log 4}=9.6 \approx 10
\end{aligned}
$$

The additional stages can be implemented as inverters attached at the input.

