CMOS Gate Circuits

2-input NOR gate

A
\[F = \overline{A+B} \]

2-input NAND gate

A
\[F = \overline{A \cdot B} \]

Basic gate sizing

All sizing will be based on the device sizes of the CMOS inverter.

Worst-case gate sizing (from speed point of view)

Assume that when \(V_{ds} = 0 \) or \(|V_{gs}| = V_{dd} \), \(R_{mos} = 0 \) and when \(V_{gs} = 0 \) or \(|V_{ds}| = 0 \), \(R_{mos} = \infty \).

Effective \(W \) for series transistors

\[R_{mos} = \frac{K}{W} \]

\[W_{eff} = \frac{1}{\left(\frac{1}{w_1} + \frac{1}{w_2} + \frac{1}{w_3}\right)} \]
2-input NOR

\[A \overline{W} \quad (4W) \]

\[B \overline{W} \quad (4W) \]

\[F = \overline{A + B} \]

\[\text{Area} = 10(\mu\text{L}) \]

2-input NAND

\[A \overline{W} \quad (2W) \]

\[B \overline{W} \quad (2W) \]

\[F = \overline{A \cdot B} \]

\[\text{Area} = 8(\mu\text{L}) \]

3-input NAND gate

\[A \overline{W} \quad (2W) \]

\[B \overline{W} \quad (2W) \]

\[C \overline{W} \quad (2W) \]

\[F = \overline{A \cdot B \cdot C} \]

\[\text{Area} = 15(\mu\text{L}) \]
Fan-in and Fan-out

Fan-in:

1. \[F \]

2. \[UDD \]

Pseudo NMOS

\[(W) \]

\[(NW) \]
Fan out = \frac{\text{Cout}}{\text{Cgate}} = \frac{\text{Total capacitance driven by the gate}}{\text{Input capacitance of the gate}}

\[\text{VTC} \]

\[\text{NAND2} \]

1. \(A = 1 \)
 \(B = 0 \to L \)

2. \(A = 0 \to 1 \)
 \(B = 0 \to 1 \)

Ex. 5.2

\(V_{S1} = 0.77V, \quad V_{S2} = 0.9V \)

\[\text{NOR2} \]

1. \(A = 0 \)
 \(B = 0 \to L \)

2. \(A = 0 \to 1 \)
 \(B = 0 \to 1 \)