EXAMINATION NO. 2 - SOLUTIONS

(Average score $=77 / 100$)

Problem 1-(25 points)

The inverter shown is to be designed in a $0.13 \mu \mathrm{~m}$ technology to have $V_{O H}=1.2 \mathrm{~V}$ and $V_{O L}=0.1 \mathrm{~V}$. (a.) Find the value of $V_{G G}$ needed to produce the desired value of $V_{O H}$. (b.) What is the region of operation for each transistor when the input is at $V_{D D}$ and the output is at $V_{O L}$ (use the value of $V_{G G}$ found above)? (c.) How much current flows in each transistor when the input is at $V_{D D}$ and the output is low? (The current in each transistor does not have to be equal.)

Solution

(a.) $V_{O H}$ occurs when $v_{I N}=0$ which means the NMOS is off.

Assuming no current flow in M 1 or M 2 , then $V_{O H}$ would be equal to $V_{G G}-V_{T N}$.
Assuming that $v_{O U T} \approx V_{O H}=1.2 \mathrm{~V}$ allows us to find $\left|V_{T P}\right|$ as,

$$
V_{T N}=V_{T N O}+\gamma \sqrt{2 \phi_{\mathrm{F}}+V_{B S}}-\gamma \sqrt{2 \phi_{\mathrm{F}}}=0.4+0.2 \sqrt{0.88+1.2}-\sqrt{0.88}=0.5 \mathrm{~V}
$$

$\therefore V_{G G}=V_{T N}+V_{D D}=\underline{\underline{1.7 V}}$
(b.) Ignore bulk effects since both drains are close to ground. Find $V_{D S}($ sat) for both transistors.
$\mathrm{M} 1: V_{G S}=1.2 \mathrm{~V} \quad \rightarrow \quad V_{D S 1}(\mathrm{sat})=\frac{\left(V_{G S}-V_{T N}\right) E_{C} L}{V_{G S}-V_{T N}+E_{C} L}=\frac{0.8(0.6)}{0.8+0.6}=0.343 \mathrm{~V}$

$$
V_{D S 1}=V_{O L}<V_{D S}(\mathrm{sat}) \Rightarrow \quad \mathrm{M} 1 \text { is linear/active }
$$

M2: $V_{G S}=V_{G G}-V_{O L}=1.6 \mathrm{~V} \rightarrow \quad V_{D S 2}($ sat $)=\frac{\left(V_{G S}-V_{T N}\right) E_{C} L}{V_{G S}-V_{T N}+E_{C} L}=\frac{1.2(0.6)}{1.2+0.6}=0.4 \mathrm{~V}$

$$
\begin{equation*}
V_{D S 2}=1.2-0.1=1.1 \mathrm{~V}>V_{D S 2}(\mathrm{sat}) \quad \Rightarrow \quad \underline{\underline{\mathrm{M} 2} \text { is saturated }} \tag{5}
\end{equation*}
$$

(c.)

M1:

$$
\begin{align*}
& I_{D S 1}=\frac{W}{L} \frac{\mu_{e} C_{o x}}{\left(1+\frac{v_{D S}}{E_{c} L}\right)}\left(V_{G S}-V_{T}-\frac{V_{D S}}{2}\right) V_{D S}=(10) \frac{270\left(1.6 \times 10^{-6}\right)}{1+\frac{0.1}{0.6}}(1.2-0.4-0.05)(0.1) \\
& I_{D S 1}=(10) \frac{(270)\left(1.6 \times 10^{-6}\right)}{1.1667}(0.75)(0.1)=\underline{\underline{278 \mu \mathrm{~A}}} \tag{5}
\end{align*}
$$

M2 (Ignore the bulk since $V_{\text {out }}=0.1 \mathrm{~V}$):

$$
\begin{align*}
I_{D S 2} & =W v_{s a t} C_{o x} \frac{\left(V_{G S}-V_{T}\right)^{2}}{\left(V_{G S}-V_{T}\right)+E_{c} L} \\
& =\left(0.25 \times 10^{-4}\right)\left(8 \times 10^{6}\right)\left(1.6 \times 10^{-6}\right) \frac{(1.7-0.1-0.4)^{2}}{(1.7-0.1-0.4)+0.6}=\underline{\underline{256 \mu A}} \tag{5}
\end{align*}
$$

Problem 2 - (25 points)

A CMOS inverter in $0.18 \mu \mathrm{~m}$ technology is shown. This inverter is to be operated from $V_{D D}=1.8 \mathrm{~V}$. Find the switching threshold, V_{s}, and sketch the voltage transfer characteristic for this case. Design the CMOS inverter $\left(W_{N} / W_{P}\right)$ to achieve a switching threshold of $0.5 V_{D D}$.

Solution

The switching threshold, V_{s}, is found as

$$
\begin{aligned}
V_{s} & =\frac{V_{D D}-\left|V_{T P}\right|+\chi V_{T N}}{1+\chi} \text { where } \chi=\sqrt{\frac{\mu_{n} W_{N}}{\mu_{p} W_{P}}} \\
\chi & =\sqrt{\frac{270 \cdot 0.4}{70 \cdot 1.2}}=1.134
\end{aligned}
$$

$$
\therefore \quad V_{S}(1.8 \mathrm{~V})=\frac{1.8-0.5+(1.134)(0.5)}{1+1.134}=\underline{\underline{0.875 \mathrm{~V}}}(10)
$$

The VTC is shown.
To design the CMOS inverter to achieve a switching threshold of $0.5 V_{D D}$, we solve for χ.to get

$$
\begin{align*}
& \chi=\frac{V_{D D}-\left|V_{T P}\right|-V_{S}}{V_{s}-V_{T N}}=\frac{0.5 V_{D D}-\left|V_{T P}\right|}{0.5 V_{D D}-V_{T N}}=1 \\
& \therefore \sqrt{\frac{\mu_{n} W_{N}}{\mu_{p} W_{P}}}=1 \rightarrow \frac{W_{N}}{W_{P}}=\frac{\mu_{p}}{\mu_{n}}=\underline{\underline{0.26}} \tag{10}
\end{align*}
$$

Problem 3-(25 points)

Use $0.18 \mu \mathrm{~m}$ technology for this problem.
(a.) For the NOR gate shown, size the transistors to deliver a switching threshold of $V_{S}=0.75 \mathrm{~V}$. Place the device sizes (W) on the schematic in units of nanometers assuming $L=200 \mathrm{~nm}$. Choose the W such that $R_{\text {pulldown }}$ is the same as the standard inverter.
(b.) The voltage transfer curve of this gate is shown for various combinations of inputs. Provide an explanation as to why this occurs. How would you adjust the expression of V_{S} to account for this effect?

Solution

a.) $V_{S}=\frac{V_{D D}-\left|V_{T p}\right|+\chi V_{T n}}{1+\chi} \quad$ where $\chi=\sqrt{\frac{\mu_{n} W_{n}}{\mu_{p} W_{p}}}$

$$
0.75=\frac{1.8-0.5+\chi 0.5}{1+\chi} \rightarrow 0.75+0.75 \chi=1.3+0.5 \chi
$$

$$
\therefore \quad 0.25 \chi=0.55 \quad \rightarrow \chi=2.2
$$

$$
\chi^{2}=\frac{\mu_{n} W_{n}}{\mu_{p} W_{p}} \quad \rightarrow \quad 2.2^{2}=\frac{270 W_{n}}{70 W_{p}} \quad \rightarrow \quad \frac{W_{n}}{W_{p}}=\frac{70}{270} 2.2^{2}=1.255
$$

To get the standard pull-up resistance, W_{n} must be 200 nm . Therefore,

$$
\begin{equation*}
\underline{\underline{W}}_{\underline{n}}=200 \mathrm{~nm} \text { and } W_{\underline{p}}=(1 / 1.255) \cdot 2 \cdot 200 \mathrm{~nm}=319 \mathrm{~nm} \tag{10}
\end{equation*}
$$

This result means that the normal $4 W_{n}=800 \mathrm{~nm}$ for the PMOS transistors is reduced to 319 nm in order to achieve the lower V_{s} (weakening the PMOS devices).
(b.) Compared with A, B moves to the right because of the body effect on the PMOS transistor.

With both inputs tied together the pull-down is stronger because both NMOS transistors are in parallel for an effective doubling of the pull-down width.

To account for the difference, adjust the value of $\left|V_{T p}\right|$ to include the body effect.

Problem 4-(25 points)

Using complex CMOS logic, implement the function, $F=(A B+C) E$. Assume that each input and its complement are available. Assuming all transistors have the same length, size the widths to implement the FO 4 rules (the worst case pull-up and pull-down is identical to an inverter with $W_{p}=2 W$ and $W_{n}=W$). What is the value of W for this logic gate if $t_{P L H}$ $=t_{P H L}=50 \mathrm{ps}, L=0.1 \mu \mathrm{~m}$, and $C_{L}=100 \mathrm{fF}$?

Solution

NMOS complex:

$$
\begin{align*}
& \overline{\mathrm{F}}=\overline{(\mathrm{AB}+\mathrm{C}) \mathrm{E}}=\overline{\mathrm{AB}+\mathrm{C}}+\overline{\mathrm{E}} \\
& =\overline{\mathrm{AB}} \overline{\mathrm{C}}+\overline{\mathrm{E}}=(\overline{\mathrm{A}}+\overline{\mathrm{B}}) \overline{\mathrm{C}}+\overline{\mathrm{E}} \tag{8}
\end{align*}
$$

PMOS complex:

$$
\mathrm{F}=\overline{\mathrm{A}} \overline{\mathrm{~B}}+\overline{\mathrm{C}}+\overline{\mathrm{E}}=(\overline{\mathrm{A}} \overline{\mathrm{~B}}+\overline{\mathrm{C}}) \overline{\mathrm{E}}
$$

which is the dual of $\overline{\mathrm{F}}$
Therefore, the CMOS logic implementation is shown along with the sizing that satisfies the FO4 rules.
The value of W can be found as follows,

$$
\begin{aligned}
t_{P H L} & =t_{P L H}=50 \mathrm{ps}=0.7 R_{e f f} C_{L} \\
50 \mathrm{ps} & =0.7 R_{e q n}(L / W) C_{L} \\
& =0.7(12.5 \mathrm{k} \Omega)(L / W) 100 \mathrm{fF} \\
\therefore W / L & =\frac{0.7 \cdot 12.5 \times 10^{3} \cdot 100 \mathrm{fF}}{50 \mathrm{ps}}=17.5 \\
W & =17.5(0.1 \mu \mathrm{~m})=\underline{\underline{1.75 \mu \mathrm{~m}}}
\end{aligned}
$$

