NAME \qquad SCORE \qquad
INSTRUCTIONS: This exam is closed book. You are allowed to have one page of handwritten (or typed) notes (both sides). The exam consists of 4 questions for a total of 100 points. Please show your work leading to your answers so that maximum partial credit may be given where appropriate. Be sure to turn in your exam with the problems in numerical order, firmly attached together.

TRANSISTOR INFORMATION:

The following is for an NMOS transistor only (with appropriate sign changes they can be used for PMOS transistors):

$$
V_{T}=V_{T 0}+\gamma\left(\sqrt{\left|2 \phi_{F}\right|+\mathrm{VSB}}-\sqrt{\left|2 \phi_{F}\right|}\right.
$$

For long-channel devices, the current equations are:
If $V_{G S} \geq V_{T}$

$$
\begin{aligned}
\text { and } V_{D S} \geq V_{G S}-V_{T} \text { (the saturation region) } & I_{D S}=\frac{\mathrm{k}}{2}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right) \\
\text { or } V_{D S} \leq V_{G S}-V_{T} \text { (the linear region) } & I_{D S}=\frac{\mathrm{k}}{2}\left[2\left(V_{G S}-V_{T}\right) V_{D S}-V_{D S}{ }^{2}\right] \\
\text { If } V_{G S}<V_{T} \text { (subthreshold region) } & I_{D S} \approx 0
\end{aligned}
$$

For velocity saturated short-channel devices, the current equations are:
If $V_{G S} \geq V_{T}$
and $V_{D S} \geq \frac{\left(V_{G S}-V_{T}\right) E_{c} L}{\left(V_{G S}-V_{T}\right)+E_{c} L}$ (saturation region) $I_{D S}=W v_{s a t} C_{o x} \frac{\left(V_{G S}-V_{T}\right)^{2}}{\left(V_{G S}-V_{T}\right)+E_{c} L}$ or $V_{D S}<\frac{\left(V_{G S}-V_{T}\right) E_{c} L}{\left(V_{G S}-V_{T}\right)+E_{c} L}$ (linear region) $I_{D S}=\frac{W}{L} \frac{\mu_{e} C_{o x}}{\left(1+\frac{v_{D S}}{E_{c} L}\right)}\left(V_{G S}-V_{T}-\frac{V_{D S}}{2}\right) V_{D S}$
If $V_{G S}<V_{T}$ (subthreshold region) $I_{D S}=I_{S} \exp \left(\frac{q\left(V_{G S}-V_{T}-V_{\text {offset }}\right)}{n k T}\right)\left[1-\exp \left(\frac{-q V_{D S}}{k T}\right)\right]$

		$0.18 \mu \mathrm{~m}$		$0.13 \mu \mathrm{~m}$				
Name	Symbol	NMOS	PMOS	NMOS	PMOS	Units		
Oxide Thickness	$t_{o x}$	35	35	22	22	\AA		
Oxide Capacitance	$C_{o x}$	1.0	1.0	1.6	1.6	$\mu \mathrm{~F} / \mathrm{cm}^{2}$		
Threshold Voltage	$V_{T O}$	0.5	-0.5	0.4	-0.4	V		
Body-Effect Term	γ	0.3	0.3	0.2	0.2	$\mathrm{~V}^{0.5}$		
Fermi Potential	$2 \mid \phi_{F} \downharpoonleft$	0.84	0.84	0.88	0.88	V		
Junction Cap. Coeff.	$C_{j 0}$	1.6	1.6	1.6	1.6	$\mathrm{fF} / \mu \mathrm{m}^{2}$		
Built-In Junct. Potential	ϕ_{B}	0.9	0.9	1.0	1.0	V		
Grading Coefficient	m	0.5	0.5	0.5	0.5	-		
Nominal Mobility	μ_{o}	540	180	540	180	$\mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$		
Effective Mobility	μ_{e}	270	70	270	70	$\mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$		
Critical Field	E_{c}	$6 \mathrm{x} 10^{4}$	$24 \mathrm{x} 10^{4}$	$6 \mathrm{x} 10^{4}$	$24 \mathrm{x} 10^{4}$	$\mathrm{~V} / \mathrm{cm}$		
Critical Field x L	$E_{C} L$	1.2	4.8	0.6	2.4	V		
Effective Resistance	$R_{e f f}$	12.5	30	12.5	30	$\mathrm{k} \Omega / \mathrm{sq}$.		
Saturation Velocity	$v_{s a t}$	$8 \mathrm{x} 10^{6}$						$\mathrm{~cm} / \mathrm{s}$

CAPACITOR INFORMATION:

	Cutoff	Linear	Saturation
$C_{g s}$	$C_{o l}$	$C_{o l}+0.5 C_{g}$	$C_{o l}+0.67 C_{g}$
$C_{g d}$	$C_{o l}$	$C_{o l}+0.5 C_{g}$	$C_{o l}$
$C_{g b}$	$1 /\left(1 / C_{g}+1 / C_{j c}\right)<C_{g b}<C_{g}$	0	0
$C_{s b}$	$C_{j S B}$	$C_{j S B}+\alpha_{1} C_{j c}$	$C_{j S B}+\beta_{1} C_{j c} \quad(\alpha, \beta$ small $)$
$C_{d b}$	$C_{j D B}$	$C_{j D B}+\alpha_{2} C_{j c}$	$C_{j D B}+\beta_{2} C_{j c} \quad(\alpha, \beta$ small $)$

where, $\quad C_{o l}=$ overlap capacitance $\quad C_{j c}=$ channel to substrate depeletion capacitance

$$
C_{g}=C_{o x} L \quad C_{j}=\frac{C_{j b}\left(A_{b}+A_{s w}\right)}{\left(1-\frac{V_{j}}{\phi_{B}}\right)^{m j}}
$$

where $A_{b}=$ area of source/drain and $A_{s w}=$ area of side of source/drain facing the channel Gate capacitance coefficient: $C_{g}=2 \mathrm{fF} / \mu \mathrm{m}$
Self capacitance coefficient: $C_{e f f}=1 \mathrm{fF} / \mu \mathrm{m}$
Wire capacitance coefficient: $C_{w}=0.1-0.25 \mathrm{fF} / \mu \mathrm{m}$
OTHER INFORMATION:

$$
\varepsilon_{O x}=4 \varepsilon_{O}=4.8 .85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}=3.54 \times 10^{-13} \mathrm{~F} / \mathrm{cm}
$$

Problem 1-(25 points)

The inverter shown is to be designed in a $0.13 \mu \mathrm{~m}$ technology to have $V_{O H}=1.2 \mathrm{~V}$ and $V_{O L}=0.1 \mathrm{~V}$. (a.) Find the value of $V_{G G}$ needed to produce the desired value of $V_{O H}$. (b.) What is the region of operation for each transistor when the input is at $V_{D D}$ and the output is at $V_{O L}$ (use the value of $V_{G G}$ found above)? (c.) How much current flows in each transistor when the input is at $V_{D D}$ and the output is low? (The current in each transistor does not have to be equal.)

Problem 2-(25 points)

A CMOS inverter in $0.18 \mu \mathrm{~m}$ technology is shown. This inverter is to be operated from $V_{D D}=1.8 \mathrm{~V}$. Find the switching threshold, V_{s}, and sketch the voltage transfer characteristic for this case. Design the CMOS inverter $\left(W_{N} / W_{P}\right)$ to achieve a switching threshold of $0.5 V_{D D}$.

Problem 3-(25 points)

Use $0.18 \mu \mathrm{~m}$ technology for this problem.
(a.) For the NOR gate shown, size the transistors to deliver a switching threshold of $V_{S}=0.75 \mathrm{~V}$. Place the device sizes (W) on the schematic in units of nanometers assuming $L=$ 200 nm . Choose the W such that $R_{\text {puldown }}$ is the same as the standard inverter.
(b.) The voltage transfer curve of this gate is shown below for various combinations of inputs. Provide an explanation as to why this occurs. How would you adjust the expression of V_{S} to account for this effect?

Problem 4-(25 points)

Using complex CMOS logic, implement the function, $F=(A B+C) E$. Assume that each input and its complement are available. Assuming all transistors have the same length, size the widths to implement the FO4 rules (the worst case pull-up and pull-down is identical to an inverter with $W_{p}=2 W$ and $W_{n}=W$). What is the value of W for this logic gate if $t_{P L H}$ $=t_{P H L}=50 \mathrm{ps}, L=0.1 \mu \mathrm{~m}$, and $C_{L}=100 \mathrm{fF}$?

Extra Sheet

