EXAMINATION NO. 3 - SOLUTIONS

(Average Score $=77 / 100$)

Problem 1-(25 points)

Calculate the optimum delay (in ps) and the size of the transistors (W and L in $\mu \mathrm{m}$) for the logic circuit shown. All devices are standard CMOS and all transistors have a minimum length of $L=0.1 \mu \mathrm{~m} . C_{i n v}$ is the input capacitance of a minimum size inverter.

Solution

Use logical effort to find the capacitances and the delay.

$$
\begin{aligned}
& P E=\Pi(L E \cdot F O)=(1)\left(\frac{4}{3}\right)\left(\frac{5}{3}\right)(1)(1000)=2222 \\
& S E=(P E)^{1 / N}=(2222)^{1 / 4}=6.87 \\
& C_{4}=\frac{L E \cdot C_{\text {out }}}{S E}=\frac{(1)(600 \mathrm{fF})}{6.87}=87.34 \mathrm{fF} \\
& 87.34=3 W C_{g} \quad \rightarrow \quad W_{n}=W=\frac{87.34}{3 \cdot 2}=\underline{14.56 \mu \mathrm{~m}} \quad W_{p}=2 W_{n}=\underline{\underline{29.11} \mu \mathrm{~m}} \\
& C_{3}=\frac{L E \cdot C_{4}}{S E}=\frac{\left(\frac{5}{3}\right)(87.34 \mathrm{fF})}{6.87}=21.19 \mathrm{fF} \\
& 21.19=5 W C_{g} \quad \rightarrow \quad W_{n}=W=\frac{21.19}{5 \cdot 2}=\underline{2.12} \underline{\mu \mathrm{~m}} \quad W_{p}=4 W_{n}=\underline{8.48} \mu \mathrm{~m} \\
& C_{2}=\frac{L E \cdot C_{3}}{S E}=\frac{\left(\frac{4}{3}\right)(21.19 \mathrm{fF})}{6.87}=4.11 \mathrm{fF} \\
& 4.11=4 W C_{g} \quad \rightarrow \quad W=\frac{4.11}{4 \cdot 2}=0.514 \mu \mathrm{~m} \quad W_{n}=W_{p}=2 W=\underline{1.03 \mu \mathrm{~m}} \\
& C_{1}=\frac{L E \cdot C_{2}}{S E}=\frac{(1)(4.11 \mathrm{fF})}{6.87}=0.6 \mathrm{fF} \\
& 0.6=3 W C_{g} \quad \rightarrow \quad W_{n}=W=\frac{0.6}{3 \cdot 2}=\underline{\underline{0.1} \mu \mathrm{~m}} \quad W_{p}=2 W_{n}=\underline{\underline{0.2} \mu \mathrm{~m}} \\
& D=\sum_{1}^{\mathrm{N}}\left(S E+P_{N}\right)=\sum_{1}^{4}\left(S E+P_{N}\right)=4(6.87)+0.5+1+1.5+0.5=31 \\
& \tau=3 R_{\text {eqn }} C_{g} L_{n}=3(12.5 \mathrm{~K})(2 \mathrm{fF})(0.1 \mu \mathrm{~m})=7.5 \mathrm{ps} \quad \therefore \quad \text { Delay }=31 \cdot 7.5 \mathrm{ps}=\underline{232.5 \mathrm{ps}}
\end{aligned}
$$

Problem 2-(25 points)

What is the minimum possible delay through the following circuit from node A to node E, and how would you size the gates? You can leave the delay and sizes in unitless quantities. Assume that the two NAND gates at the output are the same size.

Solution
$L E=(4 / 3) \mathrm{x}(1) \mathrm{x}(4 / 3) \times(4 / 3)=(4 / 3)^{3}$
$B E=(1) \mathrm{x}(1) \mathrm{x}(1) \mathrm{x}(2)=2$
$F O=\frac{140}{10}=14$

$$
\begin{array}{lllll}
\therefore & P E=(4 / 3)^{3}(2)(14)=66.4 & \rightarrow & S E=(P E)^{1 / 4}=2.854 \\
& C_{4}=\frac{140(4 / 3)}{2.854}=\underline{\underline{65.4}} & 4 W C_{g}=65.4 & \rightarrow & W=8.19 \rightarrow W_{n}=W_{p}=8.19 \\
& C_{3}=\frac{2 \cdot 65.4(4 / 3)}{2.854}=\underline{\underline{61.1}} & 4 W C_{g}=61.1 & \rightarrow & W=7.66 \rightarrow W_{n}=W_{p}=7.66 \\
C_{2}=\frac{61.1(1)}{2.854}=\underline{\underline{21.4}} & 3 W C_{g}=21.4 & \rightarrow & W=3.56 \rightarrow W_{n}=3.56 \quad W_{p}=7.17 \\
& C_{\text {in }}=\frac{21.4(4 / 3)}{2.854}=10 & 4 W C_{g}=10 & \rightarrow & W=1.25 \rightarrow W_{n}=W_{p}=1.25
\end{array}
$$

$$
D=4(2.854)+3(1)+(0.5)=\underline{14.91}
$$

Problem 3-(25 points)

Using transmission gates, design a logic circuit whose output is,

$$
\text { Out }=\overline{(A+B+C)}+\bar{A} B
$$

Use A and B as the control signals of a two-level multiplexer architecture. Remove the transistors and switches that are not necessary.

Solution

Out $=\overline{(A+B+C)}+\bar{A} B=\bar{A} \bar{B} \bar{C}+\bar{A} B$

A	B	C	Out
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Problem 4-(25 points)
Design a domino logic circuit whose output is

$$
O u t=A \bar{B}+B C+\bar{C}
$$

Solution

