EXAMINATION NO. 3

NAME___SCORE________/100

INSTRUCTIONS: This exam is closed book. You are allowed to have one page of handwritten (or typed) notes (both sides, no Xerox reductions). The exam consists of 4 questions for a total of 100 points. Please show your work leading to your answers so that maximum partial credit may be given where appropriate. Be sure to turn in your exam with the problems in numerical order, firmly attached together.

TRANSISTOR INFORMATION:

The following is for an NMOS transistor only (with appropriate sign changes they can be used for PMOS transistors):

\[V_T = V_{T0} + \gamma(\sqrt{2|\phi_F|} + V_{SB} - \sqrt{2|\phi_F|}) \]

For long-channel devices, the current equations are:

If \(V_{GS} \geq V_T \)

and \(V_{DS} \geq V_{GS} - V_T \) (the saturation region)

\[I_{DS} = \frac{k}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS}) \]

or \(V_{DS} \leq V_{GS} - V_T \) (the linear region)

\[I_{DS} = \frac{k}{2} [2(V_{GS} - V_T)V_{DS} - V_{DS}^2] \]

If \(V_{GS} < V_T \) (subthreshold region)

\[I_{DS} = 0 \]

For velocity saturated short-channel devices, the current equations are:

If \(V_{GS} \geq V_T \)

and \(V_{DS} \geq \frac{(V_{GS} - V_T)E_cL}{(V_{GS} - V_T) + E_cL} \) (saturation region)

\[I_{DS} = \frac{W_n v_{sat} C_{ox}}{L} \frac{(V_{GS} - V_T)^2}{(V_{GS} - V_T) + E_cL} \]

or \(V_{DS} < \frac{(V_{GS} - V_T)E_cL}{(V_{GS} - V_T) + E_cL} \) (linear region)

\[I_{DS} = \frac{W_n h_e C_{ox}}{L} \left(\frac{1}{1 + \frac{V_{DS}}{E_cL}} \right) \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) V_{DS} \]

If \(V_{GS} < V_T \) (subthreshold region)

\[I_{DS} = I_s \exp \left(\frac{q(V_{GS} - V_T - V_{offset})}{nkT} \right) \left[1 - \exp \left(-\frac{qV_{DS}}{kT} \right) \right] \]

\begin{table}[h]
\centering
\begin{tabular}{|l|l|c|c|c|c|}
\hline
\textbf{Name} & \textbf{Symbol} & \textbf{NMOS} & \textbf{PMOS} & \textbf{NMOS} & \textbf{PMOS} & \textbf{Units} \\
\hline
Oxide Thickness & \(t_{ox} \) & 35 & 35 & 22 & 22 & Å \\
\hline
Oxide Capacitance & \(C_{ox} \) & 1.0 & 1.0 & 1.6 & 1.6 & \(\mu F/cm^2 \) \\
\hline
Threshold Voltage & \(V_{TO} \) & 0.5 & -0.5 & 0.4 & -0.4 & V \\
\hline
Body-Effect Term & \(\gamma \) & 0.3 & 0.3 & 0.2 & 0.2 & V \\
\hline
Fermi Potential & \(2|\phi_F| \) & 0.84 & 0.84 & 0.88 & 0.88 & V \\
\hline
Junction Cap. Coeff. & \(C_{J0} \) & 1.6 & 1.6 & 1.6 & 1.6 & fF/\mu m^2 \\
\hline
Built-In Junct. Potential & \(\phi_B \) & 0.9 & 0.9 & 1.0 & 1.0 & V \\
\hline
Grading Coefficient & \(m \) & 0.5 & 0.5 & 0.5 & 0.5 & - \\
\hline
Nominal Mobility & \(\mu_o \) & 540 & 180 & 540 & 180 & cm^2/V·s \\
\hline
Effective Mobility & \(\mu_e \) & 270 & 70 & 270 & 70 & cm^2/V·s \\
\hline
Critical Field & \(E_c \) & 6x10^4 & 24x10^4 & 6x10^4 & 24x10^4 & V/cm \\
\hline
\end{tabular}
\end{table}
Critical Field x L	E_cL	1.2	4.8	0.6	2.4	V
Effective Resistance | R_{eff} | 12.5 | 30 | 12.5 | 30 | kΩ/sq.
Saturation Velocity | v_{sat} | 8x106 | cm/s

CAPACITOR INFORMATION:

<table>
<thead>
<tr>
<th>C</th>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{gs}</td>
<td>C_{ol}</td>
<td>$C_{ol} + 0.5C_{g}$</td>
<td>$C_{ol} + 0.67C_{g}$</td>
</tr>
<tr>
<td>C_{gd}</td>
<td>C_{ol}</td>
<td>$C_{ol} + 0.5C_{g}$</td>
<td>C_{ol}</td>
</tr>
<tr>
<td>C_{gb}</td>
<td>$1/(1/C_{g} + 1/C_{jc}) < C_{gb} < C_{g}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C_{sb}</td>
<td>C_{jSB}</td>
<td>$C_{jSB} + \alpha_1 C_{jc}$</td>
<td>$C_{jSB} + \beta_1 C_{jc}$ (α, β small)</td>
</tr>
<tr>
<td>C_{db}</td>
<td>C_{jDB}</td>
<td>$C_{jDB} + \alpha_2 C_{jc}$</td>
<td>$C_{jDB} + \beta_2 C_{jc}$ (α, β small)</td>
</tr>
</tbody>
</table>

where, C_{ol} = overlap capacitance and C_{jc} = channel to substrate depletion capacitance.

$$C_{g} = C_{ox} L, \quad C_{j} = \frac{C_{jB}(A_{B} + A_{sw})}{1 - \frac{V}{\phi_{B}^m}}$$

where A_{B} = area of source/drain and A_{sw} = area of side of source/drain facing the channel.

Gate capacitance coefficient: $C_{g} = C_{ox} L + 2C_{ol} \approx 2fF/\mu m$

Self capacitance coefficient: $C_{eff} = C_{j} + 2C_{ol} \approx 1fF/\mu m$

Wire capacitance coefficient: $C_{w} = C_{int} = 0.1-0.25fF/\mu m$

OTHER INFORMATION:

$\varepsilon_{ox} = 4\varepsilon_{o} = 4 \cdot 8.85 \times 10^{-14} F/cm = 3.54 \times 10^{-13} F/cm$

Logical Effort:

<table>
<thead>
<tr>
<th>Type of Gate</th>
<th>1 input</th>
<th>2 inputs</th>
<th>3 inputs</th>
<th>4 inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NAND</td>
<td>-</td>
<td>4/3</td>
<td>5/3</td>
<td>6/3</td>
</tr>
<tr>
<td>NOR</td>
<td>-</td>
<td>5/3</td>
<td>7/3</td>
<td>9/3</td>
</tr>
</tbody>
</table>

Parasitic Terms:

<table>
<thead>
<tr>
<th>Type of Gate</th>
<th>1 input</th>
<th>2 inputs</th>
<th>3 inputs</th>
<th>4 inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter</td>
<td>1/2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NAND</td>
<td>-</td>
<td>1</td>
<td>3/2</td>
<td>2</td>
</tr>
<tr>
<td>NOR</td>
<td>-</td>
<td>3/2</td>
<td>9/4</td>
<td>3</td>
</tr>
</tbody>
</table>
Problem 1 - (25 points)

Calculate the optimum delay (in ps) and the size of the transistors (in μm) for the logic circuit shown. All devices are standard CMOS and all transistors have a minimum length of $L = 0.1\mu$m. C_{inv} is the input capacitance of a minimum size inverter.
Problem 2 – (25 points)

What is the minimum possible delay through the following circuit from node A to node E, and how would you size the gates? You can leave the delay and sizes in unitless quantities. Assume that the two NAND gates at the output are the same size.
Problem 3 – (25 points)

Using transmission gates, design a logic circuit whose output is,

\[\text{Out} = \overline{(A + B + C)} + \overline{A} \cdot B \]

Use \(A \) and \(B \) as the control signals of a two-level multiplexer architecture. Remove the transistors and switches that are not necessary.
Problem 4 – (25 points)

Design a domino logic circuit whose output is

\[\text{Out} = A \overline{B} + BC + \overline{C} \]