Homework Assignment No. 5

Due on Wednesday, February 16, 2005

1.) Problem P4.3 of the text. Use SPICE to confirm the results.

[Partial Answers: $V_{IH} = 0.65$ V and $V_{IL} = 0.55$ V]

2.) Problem P4.9 of the text.

[Answers: $W_n = 0.2 \mu m$, 0.1 μm and 0.6 μm]

3.) Problem P4.10 of the text.

[Partial Answers: $V_S = 0.566$ V, $V_{IL} \approx 0.533$ V, $V_{IH} \approx 0.667$ V]

4.) An NMOS transistor with a $10k\Omega$ resistor as a load is used to implement a simple inverter as shown. The alpha-power model of Section 2.6 is used to fit the measured data for the NMOS transistor to produce the following two equations:

a.) Derive the expression for $V_{DS(sat)}$ assuming the model above.

b.) Design V_{DD} and W/L of the resistively loaded inverter above to achieve $V_{OH} = 3.3$ V and $V_{OL} = 0.3$ V.

c.) For the inverter of part b.) derive an expression for V_{IL} using the given alpha-power model. Using the previous values, evaluate V_{IL} .

5.) For the pseudo-NMOS load inverter shown using 0.18µm CMOS technology, determine V_{OH} and estimate V_{OL} using the velocity saturated model with effective mobility (high vertical field). Be sure to clearly state any assumptions used in estimating V_{OL} .

