Homework No. 5 - Solutions

Problem 1-P4.3
For this problem, you are required to use the formulae:

$$
V_{I L}=\frac{2 V_{\text {out }}-V_{D D}-\left|V_{T P}\right|+\left(k_{N} / k_{P}\right)\left(V_{T N}\right)}{1+\left(k_{N} / k_{P}\right)} \quad V_{I H}=\frac{2 V_{\text {out }}+V_{T N}+\left(k_{P} / k_{N}\right)\left(V_{D D}-\left|V_{T P}\right|\right)}{1+\left(k_{P} / k_{N}\right)}
$$

We already know that $\mathrm{V}_{\mathrm{OH}}=1.2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}$. For V_{S} use:

$$
\begin{aligned}
W_{N} & =4 \lambda, \quad W_{P}=16 \lambda: \\
X & =\sqrt{\frac{\frac{W_{N}}{E_{C N} L_{N}}}{\frac{W_{P}}{E_{C P} L_{P}}}}=\sqrt{\frac{W_{N} E_{C P}}{W_{P} E_{C N}}}=\sqrt{\frac{(4)(24)}{(16)(6)}}=1 \\
V_{S} & =\frac{0.8+(0.4) 1}{1+1}=0.6 \mathrm{~V}
\end{aligned}
$$

Next V_{IL} and V_{IH} are estimated as follows:

$$
\begin{gathered}
V_{I L}=\frac{2 V_{\text {out }}-V_{D D}-\left|V_{T P}\right|+\left(k_{N} / k_{P}\right)\left(V_{T N}\right)}{1+\left(k_{N} / k_{P}\right)}=\frac{2 V_{\text {out }}-1.2-|-0.4|+(1)(0.4)}{1+(1)}=\frac{2 V_{\text {out }}-1.2}{2}=0.55 \mathrm{~V} \\
V_{I H}=\frac{2 V_{\text {out }}+V_{T N}+\left(k_{P} / k_{N}\right)\left(V_{D D}-\left|V_{T P}\right|\right)}{1+\left(k_{P} / k_{N}\right)}=\frac{2 V_{\text {out }}+0.4+(1)(1.2-0.4)}{1+(1)}=\frac{2 V_{\text {out }}+1.2}{2}=0.65 \mathrm{~V}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& N M_{L}=0.55-0=0.55 \mathrm{~V} \\
& N M_{H}=1.2-0.65 \mathrm{~V}=0.55 \mathrm{~V}
\end{aligned}
$$

When we cut the size of the PMOS device in half, the VTC shifts to the left. So $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{S}}$, and V_{IH} will all shift to the left. The recalculation of the switching threshold produces $\mathrm{V}_{\mathrm{S}}=0.566 \mathrm{~V}$.

We can compute V_{IL} to be roughly 0.533 V and V_{IH} to be roughly 0.667 V .
Therefore

$$
\begin{aligned}
& N M_{L}=0.533-0=0.533 \mathrm{~V} \\
& N M_{H}=1.2-0.667 \mathrm{~V}=0.533 \mathrm{~V}
\end{aligned}
$$

ACE 4420 - Spring 2005
Design the circuit for
Page 2

Problem 2-P4.9
$V_{0}=0.10, L=0.1 \mathrm{~mm}$ in 0.13 amm technology.

* Resistive Load inverter:
$E_{C L}=0.6 \mathrm{~V}$
$V_{\text {at }}=1.2 \mathrm{~V}$
$V_{\text {aL }}=0.1 \mathrm{~V}$
$C_{0 x}=1.6_{\mu} F\left(\mathrm{~cm}^{2}\right.$

$$
\frac{V_{D D}-V_{O L}}{R_{l,}}=\frac{W_{N}}{L_{N}} \frac{\mu_{n} C_{a x}}{\left(1+\frac{V_{O L}}{E_{r} L}\right)}\left[\left(V_{o H}-V_{\tau}\right) V_{o L}-\frac{V_{o L_{2}^{2}}^{2}}{2}\right]
$$

$u_{m}=270 \frac{\mathrm{~cm}^{2}}{0.5}$
$v_{\text {cat }}=8 \times 10^{6}$

$$
\begin{aligned}
& \frac{1.2-0.1}{10 \mathrm{k}}=\frac{W_{N}}{0.1} \frac{(270)\left(1.6 \times 10^{-0}\right)}{\left(1+\frac{0.1}{0.6}\right)}\left[\not 2(1.2-0.4) 0.1-\frac{0.1^{2}}{2}\right] \\
& \therefore W_{N}=0.2 \mu m \\
&
\end{aligned}
$$

b) $\frac{1.2 \mathrm{~V}}{\sqrt{102}}$

Saturated Enhancement Load inverter (ignoring body-effect):

$$
\frac{W_{I}}{0.1} \frac{(270)\left(1.6 \times 10^{-6}\right)}{\left(1+\frac{0.1}{0.6}\right)}\left[\not \mathfrak{Z}(1.2-0.4) 0.1-\frac{0.1^{2}}{2}\right]=\frac{0.1\left(10^{-4}\right)(8)(1.6)(1.2-0.1-0.4)^{2}}{(1.2-0.1-0.4)+0.6}
$$

$$
\therefore W_{v}=0.1 \mu \mathrm{~m} \quad \omega=0.174 \mathrm{am} \quad 1.6 \mathrm{C}
$$

$$
\begin{aligned}
& \frac{W_{1}}{0.1} \frac{(270)\left(1.6 \times 10^{-6}\right)}{\left(1+\frac{0.1}{0.6}\right)}\left[f(1.2-0.4) 0.1-\frac{0.1^{2}}{2}\right]=\frac{0.1\left(10^{-4}\right)(8)(1.6)(1.6-0.1-0.4)^{2}}{(1.6-0.1-0.4)+0.6} \\
& \therefore W_{N}=0.6 \mu \mathrm{~m} \quad \omega=0.328 \mathrm{\mu m}
\end{aligned}
$$

The linear enhancement load inverter requires the largest pull-down device since it has the strongest pull up device. The resistive load inverter is next and the saturated enhancement load requires the smallest pull-down device.

Problem 3-P4.10
We will illustrate the process and estimate the solutions for this problem.
We already know that $\mathrm{V}_{\mathrm{OH}}=1.2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}$. For V_{S} use:

$$
\begin{aligned}
& \frac{W_{l}}{L_{l}} \frac{\mu_{N} C_{o x}}{\left(1+\frac{V_{o u t}}{E_{C N} L_{l}}\right)}\left[\left(V_{i, n}-V_{n}\right) V_{o u t}-\frac{V_{o u t}{ }^{2}}{2}\right]=\frac{W_{L} V_{v a l} C_{o x}\left(V_{D D}-V_{o u t}-V_{T L}\right)^{2}}{\left(V_{O D}-V_{o u t}-V_{T L L}\right)+E_{C N} L_{l,}} \\
& \text { Lis }
\end{aligned}
$$

$$
\begin{aligned}
& I_{I}(\text { in })=I_{L} \text { (sat.) } \\
& \frac{W_{1}}{L_{I}\left(1+\frac{\mu_{N} C_{o x}}{E_{C u t} L_{l}}\right)}\left[\left(V_{i n}-V_{T I}\right) V_{o u t}-\frac{V_{o u}{ }^{2}}{2}\right]=\frac{W_{L} V_{\text {suI }} C_{o x}\left(V_{D D}-V_{o u}-V_{T L}\right)^{2}}{\left(V_{D I D}-V_{o u t} \simeq V_{T L}\right)+E_{C N} L_{L I}}
\end{aligned}
$$

$$
\begin{aligned}
W_{N} & =0.4 u m, \quad W_{P}=0.8 u m: \\
X & =\sqrt{\frac{\frac{W_{N}}{\frac{E_{C N} L_{N}}{W_{P}}}}{E_{C P} L_{P}}}=\sqrt{\frac{W_{N} E_{C P}}{W_{P} E_{C N}}}=\sqrt{\frac{(0.4)(24)}{(0.8)(6)}}=1.41 \\
V_{S} & =\frac{0.8+(0.4) 1.41}{1+1.41}=0.566
\end{aligned}
$$

Next V_{IL} and V_{IH} are estimated as follows:

$$
\begin{gathered}
V_{I L}=\frac{2 V_{\text {out }}-V_{D D}-\left|V_{T P}\right|+\left(k_{N} / k_{P}\right)\left(V_{T N}\right)}{1+\left(k_{N} / k_{P}\right)} \\
V_{I L}=\frac{2 V_{\text {out }}-1.2-|-0.4|+(2)(0.4)}{1+(2)}=\frac{2 V_{\text {out }}-0.6}{3}
\end{gathered}
$$

We can compute $\mathrm{V}_{\text {IL }}$ to be roughly 0.533 V .

$$
\begin{gathered}
V_{I H}=\frac{2 V_{\text {out }}+V_{T N}+\left(k_{P} / k_{N}\right)\left(V_{D D}-\left|V_{T P}\right|\right)}{1+\left(k_{P} / k_{N}\right)} \\
V_{I H}=\frac{2 V_{\text {out }}+0.4+(2)(1.2-0.4)}{1+(2)}=\frac{2 V_{\text {out }}+2}{3}
\end{gathered}
$$

We can compute V_{IH} to be roughly 0.667 V .
When we double the size of the PMOS device, the VTC shifts to the right. So $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{S}}$, and V_{IH} will all shift to the right. The recalculation of the switching threshold produces $\mathrm{V}_{\mathrm{S}}=0.6 \mathrm{~V}$.

We can compute $\mathrm{V}_{\text {IL }}$ to be roughly 0.55 V and $\mathrm{V}_{\text {IH }}$ to be roughly 0.65 V .

Problem 2-P5.1

For each problem, restate each Boolean equation into a form such that it can be translated into the p and n -complex of a CMOS gate.
a. Out $=A B C+B D=\overline{\overline{A B C+B D}}=\overline{(\bar{A}+\bar{B}+\bar{C})(\bar{B}+\bar{D})}$
b. Out $=A B+\bar{A} C+B C=\overline{\overline{A B+\bar{A} C+B C}}=\overline{(\bar{A}+\bar{B})(A+\bar{C})(\bar{B}+\bar{C})}$
c. Out $=\overline{A+B+C D}+A=\bar{A} \bar{B}(\bar{C}+\bar{D})+A=\overline{\overline{\overline{A+B+C D}+A}}=\overline{(A+B+C D) \bar{A}}$

Problem 3 - P5.8

The solution is shown below. Notice that there is no relevance with the lengths and widths of the transistors when it comes to $V_{O H}$, although they the do matter when calculating $V_{O L}$.

$$
\begin{aligned}
V_{\text {out }} & =V_{G G}-V_{T} \\
V_{G G} & =V_{\text {out }}+V_{T 0}+\gamma\left(\sqrt{V_{\text {out }}+2\left|\phi_{F}\right|}-\sqrt{2\left|\phi_{F}\right|}\right) \\
& =1.8+0.5+0.3(\sqrt{1.8+0.88}-\sqrt{0.88})=2.51 \mathrm{~V}
\end{aligned}
$$

Problem 4-P5.9

For $t_{P L H}$, we need to size the pull-up PMOS appropriately.

$$
\begin{aligned}
t_{P L H} & =0.7 R C=0.7 R_{e q p} \frac{L}{W} C_{L O A D} \\
W_{p} & =0.7 R_{S Q} \frac{L}{t_{P L H}} C_{L O A D}=0.7(30 \mathrm{k} \Omega) \frac{(2 \lambda)}{\left(50 \times 10^{-12}\right)}\left(100 \times 10^{-15}\right)=84 \lambda
\end{aligned}
$$

For $V_{O L}$:

$$
\begin{aligned}
I_{P}(\text { sat }) & =\frac{W_{P} v_{\text {sat }} C_{O X}\left(V_{G S}-V_{T}\right)^{2}}{V_{G S}-V_{T}+E_{C P} L}=\frac{\left(4.2 \times 10^{-4}\right)\left(8 \times 10^{6}\right)\left(1.6 \times 10^{-6}\right)(1.2-0.4)^{2}}{1.2-0.4+(24)(0.1)}=1.08 \mathrm{~mA} \\
I_{P}(\text { sat }) & =\frac{W_{N} \mu_{N} C_{O X}\left(V_{O L}-V_{T N}-\frac{V_{O L}}{2}\right) V_{O L}}{L_{N}\left(1+\frac{V_{O L}}{E_{C N} L}\right)}=\frac{W_{N}(270)\left(1.6 \times 10^{-6}\right)\left(1.2-0.4-\frac{0.1}{2}\right) 0.1}{L_{N}\left(1+\frac{0.1}{0.6}\right)} \\
\frac{W_{N}}{L_{N}} & =38.5 \quad W_{N}=77 \lambda \quad W_{3}=3 \times 77 \lambda=232 \lambda \quad(3 \text { stack }) \quad W_{2}=155 \lambda \quad(2 \text { stack })
\end{aligned}
$$

Problem 4

An NMOS transistor with a $10 \mathrm{k} \Omega$ resistor as a load is used to implement a simple inverter as shown. The alpha-power model of Section 2.6 is used to fit the measured data for the NMOS transistor to produce the following two equations:

$$
\begin{array}{ll}
i_{D S}=(W / L) K_{L}\left(v_{G S}-V_{T N}\right) v_{D S} & v_{D S} \leq V_{D S(\mathrm{sat})} \\
i_{D S}=(W / L) K_{S}\left(v_{G S}-V_{T N}\right)^{1.5} & v_{D S} \geq V_{D S(\mathrm{sat})}
\end{array}
$$

where $K_{L}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $K_{S}=100 \mu \mathrm{~A} / \mathrm{V}^{1.5}$ and $V_{T N}=0.6 \mathrm{~V}$.

a.) Derive the expression for $V_{D S(\text { sat })}$ assuming the model above.
b.) Design $V_{D D}$ and W / L of the resistively loaded inverter above to achieve $V_{O H}=3.3 \mathrm{~V}$ and $V_{O L}=0.3 \mathrm{~V}$.
c.) For the inverter of part b.) derive an expression for $V_{I L}$ using the given alpha-power model. Using the previous values, evaluate $V_{I L}$.

Solution

a.) Equate the two equations for the linear and saturation regions to get,

$$
\frac{W}{L} K_{L}\left(V_{G S^{-}} V_{T N}\right) V_{D S(\mathrm{sat})}=\frac{W}{L} K_{S}\left(v_{G S}-V_{T N}\right)^{1.5} \rightarrow V_{D S(\mathrm{sat})}=\frac{K_{S}}{K_{L}} \sqrt{v_{G S}-V_{T N}}
$$

b.) Since $V_{O H}=V_{D D}$, let $V_{D D}=\underline{3.3 \mathrm{~V}}$. Solve for $V_{O L}$ by assuming the MOSFET is in the linear region.

$$
\begin{aligned}
& \frac{V_{D D}-V_{O L}}{R_{L}}=\frac{3.3-0.3}{10 \mathrm{k} \Omega}=300 \mu \mathrm{~A}=\frac{W}{L} K_{L}\left(V_{D D}-V_{T N}\right) V_{O L}=\frac{W}{L} 100 \mu \mathrm{~A} / \mathrm{V}^{2}(3.3-0.6) 0.3 \\
& \frac{W}{L}=\frac{300 \mu \mathrm{~A}}{81 \mu \mathrm{~A}}=\underline{\underline{3.7}}
\end{aligned}
$$

c.) For $V_{I L}$ assume the MOSFET is saturated. Therefore,

$$
\frac{V_{D D}-V_{\text {out }}}{R_{L}}=\frac{W}{L} K_{S}\left(V_{\text {in }}-V_{T N}\right)^{1.5}
$$

Differentiating with respect to $V_{\text {in }}$ gives,

$$
\begin{aligned}
& -\frac{1}{R_{L}} \frac{d V_{\text {out }}}{d V_{\text {in }}}=1.5 \frac{W}{L} K_{S}\left(V_{\text {in }}-V_{T N}\right)^{0.5} \rightarrow \quad \frac{1}{R_{L}}=1.5(3.7) K_{S}\left(V_{I L}-V_{T N}\right)^{0.5} \\
V_{I L} & =V_{T N}+\frac{1}{\left[(1.5 \cdot(W / L)) K_{S} R_{L}\right]^{2}}=0.6+\frac{1}{(1.5 \cdot 3.7 \cdot 100 \cdot 0.01)^{2}} \\
& =0.6+0.0325=\underline{\underline{0.6325 \mathrm{~V}}}
\end{aligned}
$$

Problem 5

For the pseudo-NMOS load inverter shown using $0.18 \mu \mathrm{~m}$ CMOS technology, determine $V_{O H}$ and estimate $V_{O L}$ using the velocity saturated model with effective mobility (high vertical field). Be sure to clearly state any assumptions used in estimating $V_{O L}$.

Solution

For this inverter, we know that $V_{O H} \approx V_{D D}=\underline{\underline{1.8 V}}$
For $V_{O L}$, we need to assume the state of the transistors. To help
 in this calculate $V_{D S(\text { sat })}$ for the NMOS and PMOS transistors.

$$
\begin{aligned}
& \text { PMOS: } V_{S D(\text { sat })}=\frac{\left(V_{S G}-\left|V_{T P}\right|\right) E_{C P} L_{P}}{\left(V_{S G}-\left|V_{T P}\right|\right)+E_{C P} L_{P}}=\frac{(1.8-0.5) 4.8}{(1.8-0.5)+4.8}=1.023 \mathrm{~V} \\
& \text { NMOS: } V_{D S(\mathrm{sat})}=\frac{\left(V_{G S}-V_{T N}\right) E_{C N} L_{N}}{\left(V_{G S}-V_{T N}\right)+E_{C N} L_{N}}=\frac{(1.8-0.5) 1.2}{(1.8-0.5)+1.2}=0.624 \mathrm{~V}
\end{aligned}
$$

So if $V_{O L}<0.624 \mathrm{~V}$, the PMOS is saturated and the NMOS is linear. Assuming this to be the case, we get:

$$
\frac{W_{n}}{L_{n}} \frac{\mu_{e} C_{o x}}{1+\frac{V_{D S}}{E_{C N} L_{N}}}\left(V_{G S}-V_{T N}-\frac{V_{D S}}{2}\right) V_{D S}=W_{p} v_{s a t} C_{o x} \frac{\left(V_{S G}-\left|V_{T P}\right|\right)^{2}}{\left(V_{S G}-\left|V_{T P}\right|\right)+E_{C P} L_{P}}
$$

Assuming $V_{D S}$ which is $V_{O L}$ is small, we can simplify the above to,

$$
\frac{W_{n}}{L_{n}} \mu_{e}\left(V_{G S}-V_{T N}\right) V_{O L} \approx W_{p} v_{s a t} \frac{\left(V_{S G}-\left|V_{T P}\right|\right)^{2}}{\left(V_{S G}-\left|V_{T P}\right|\right)+E_{C P} L_{P}}
$$

Substituting the values gives,

$$
\begin{aligned}
& 270\left(\mathrm{~cm}^{2} / \mathrm{v} \cdot \mathrm{~s}\right)(1.8-0.5) V_{O L}=0.4 \times 10^{-4}(\mathrm{~cm})\left(8 \times 10^{6}\right)(\mathrm{cm} / \mathrm{s}) \frac{(1.8-0.5)^{2}}{1.8-0.5+4.8} \\
& 351 V_{O L}=88.656 \quad \rightarrow \quad V_{O L}=\underline{\underline{0.253 V}}
\end{aligned}
$$

This problem can also be solved exactly for $V_{O L}$ as follows.

$$
\begin{aligned}
& \frac{270\left(1.8-0.5-0.5 V_{O L}\right) V_{O L}}{1+V_{O L} / 1.2}=\left(0.4 \times 10^{-4}\right)\left(8 \times 10^{6}\right) \frac{(1.8-0.5)^{2}}{1.8-0.5+4.8}=88.656 \\
& 270\left(1.3-0.5 V_{O L}\right) V_{O L}=88.656\left(1+0.833 V_{O L}\right) \\
& 351 V_{O L}-135 V_{O L}^{2}=88.656+73.88 V_{O L} \\
\therefore \quad & 135 V_{O L}{ }^{2}+(73.88-351) V_{O L}+88.656=0 \rightarrow V_{O L}{ }^{2}-2.053 V_{O L}+0.6567=0 \\
& V_{O L}=1.0265 \pm 0.5 \sqrt{2.053^{2}-4 \cdot 0.6567}=1.0265 \pm 0.5 \sqrt{1.588}=1.0265 \pm 0.6300 \\
\therefore \quad & V_{O L}=\underline{\underline{0.3964 V}}
\end{aligned}
$$

Either answer will be accepted provided the work is correct and the assumptions consistent.

