Homework Assignment No. 11

Due on Wednesday, April 13, 2005

1.) Problem P7.15 of the text

[Ans: a.)
$$V_x = V_{DD} - V_T$$
].

2.) Problem P8.4 of the text.

[Ans.
$$W_1 = W_2 = 0.4 \mu m$$
 and $W_3 = W_4 = W_5 = W_6 = 0.75 \mu m$ (I think, the answers are not obvious from the solutions)]

- 3.) Problem P.8.7 of the text.
- 4.) Problem P8.8 of the text.

[Ans: (a)
$$I_{SS} = 90 \mu A$$
 (b) $W/L = 2$, (d) $W/L = 1.7$ and (d) $W/L = 0.8$]

- 5.) For the logic circuit shown below, assume that the transmission gates are all 4λ : 2λ and that the inverters driving the transmission gates have PMOS transistors that are 8λ : 2λ , and NMOS transistors that are 4λ : 2λ , where λ = 0.1 μ m. The output inverter is to drive a 50 fF load. The output inverter is 4 times larger than the input inverters.
- (a.) Write the logic expression for the output function in terms of A, B, sel, and selB.
- (b.) Draw an equivalent RC circuit model for the path from A to C assuming that the sel signal is high. Write down the individual contributions for each resistance and capacitance and place the total values at the appropriate nodes.
- (c.) Find the Elmore delay from *A* to *C*.

