Homework No. 11 - Solutions

Problem 1-P7. 15

$$
\begin{aligned}
V_{O U T} & =V_{O L} \\
V_{X} & =V_{D D}-V_{T}
\end{aligned}
$$

First, let's find the required change in voltage:

$$
\begin{aligned}
& \Delta V_{O U T}=V_{D D}-V_{O L} \\
& \Delta V_{X}=\left(V_{D D}+V_{T}\right)-\left(V_{D D}-V_{T}\right)=2 V_{T}
\end{aligned}
$$

Now, let's set up the clock feedthrough equation and solve for C_{b} :

$$
\begin{aligned}
& \Delta V_{X}=\frac{C_{b} \Delta V_{\text {OUT }}}{C_{b}+C_{X}} \\
& C_{b}=\frac{\Delta V_{X} C_{X}}{\Delta V_{O U T}-\Delta V_{X}}=\frac{2 V_{T} C_{X}}{V_{D D}-V_{O L}-2 V_{T}}
\end{aligned}
$$

Problem 2 - P8. 4

To compute the device sizes, start with the access transistor and the pull-down transistor:

We can compute the needed size of
M_{3} to deliver 300uA:

1.8 V

$$
\begin{aligned}
& I_{\text {cell }}=\frac{W_{L} V_{s a t} C_{o x}\left(V_{D D}-V_{O L}-V_{T L}\right)^{2}}{\left(V_{D D}-V_{O L}-V_{T L}\right)+E_{C N} L_{L}}=\frac{W_{L}(8)(1.6)(1.8-0.5-0.5)^{2}}{(1.8-0.5-0.5)+1.2}=300 \mu \mathrm{~A} \\
& W_{L} \approx 0.75 \mu \mathrm{~m}
\end{aligned}
$$

Now determine the minimum W_{D} for the pull-down transistor:

$$
\begin{aligned}
& \therefore \frac{W_{D}}{L} \frac{\mu_{N} C_{o x}}{\left(1+\frac{V_{O L}}{E_{C N} L}\right)}\left[\left(V_{D D}-V_{T}\right) V_{O L}-\frac{V_{O L}^{2}}{2}\right]=\frac{W_{L} V_{s a t} C_{o x}\left(V_{D D}-V_{O L}-V_{T L}\right)^{2}}{\left(V_{D D}-V_{O L}-V_{T L}\right)+E_{C N} L} \\
& \frac{W_{D}}{L} \frac{(270)\left(1.6 \times 10^{-6}\right)}{\left(1+\frac{0.5}{1.2}\right)}\left[(1.8-0.5) 0.5-\frac{0.5^{2}}{2}\right]=I_{\text {cell }} \\
& \frac{W_{D}}{L} \approx 2 \quad W_{D}=0.4 \mu m \quad \text { (min) }
\end{aligned}
$$

P8.4-Continued

For the write operation, we must pull the internal node low against the PMOS pullup device. Try forcing the output to 0.5 V which is below the expected V_{S}.

$$
\begin{gathered}
\text { (}{ }_{\text {Gnd }}=\frac{W_{D}}{L} \frac{\mu_{N} C_{o x}}{\left(1+\frac{V_{O L}}{E_{C N} L}\right)}\left[\left(V_{D D}-V_{T}\right) V_{O L}-\frac{V_{O L}^{2}}{2}\right]=(3.75) \frac{(270)\left(1.6 \times 10^{-6}\right)}{\left(1+\frac{0.5}{1.2}\right)}\left[(1.8-0.5) 0.5-\frac{0.5^{2}}{2}\right]=600 \mu A \\
I_{P}=\frac{W_{P} V_{s a t} C_{o x}\left(V_{D D}-\left|V_{T P}\right|\right)^{2}}{\left(V_{D D}-\left|V_{T L}\right|\right)+E_{C P} L}=\frac{W_{L}(8)(1.6)(1.8-0.5)^{2}}{(1.8-0.5)+4.8}=600 \mu \mathrm{~A} \\
W_{P} \approx 1.7 \mu m \\
(\max)
\end{gathered}
$$

Set $W_{p}=0.75 u m$.
Compute V_{S} to ensure that the output will be below this value:

$$
\begin{aligned}
& X=\sqrt{\frac{\frac{W_{N}}{\frac{E_{C N} L_{N}}{W_{P}}}}{E_{C P} L_{P}}}=\sqrt{\frac{W_{N} E_{C P}}{W_{P} E_{C N}}}=\sqrt{\frac{(24)}{(6)}}=2 \\
& V_{S}=\frac{1.3+(0.5) 2}{1+2}=0.767 \mathrm{~V}
\end{aligned}
$$

Yes. This is still above the target $\mathrm{V}_{\text {OL }}$ so it should work just fine.

Problem 3 - P8. 7

The following is a resistive load SRAM cell:

The circuit is static in nature. Assume that q is low and qbar is high. During a read, M_{3} and M_{1} behave the same was as a 6 T cell and
 act to discharge b . Meanwhile, M_{4} turns on and hold the high value at qbar. To write a 1 into q , the bbar line is pulled low and M_{4} pulls q bar low while M_{3} pulls q high. Effectively, M_{3} and M_{4} acts as pull-ups for this type of SRAM cell.

Problem 4-P8.8

(a)

$$
I_{S S}=C \frac{d V}{d t}=50 f F \frac{0.9 \mathrm{~V}}{500 \mathrm{ps}}=90 \mu \mathrm{~A}
$$

(b) Assume long channel transistors:

$$
\begin{aligned}
& I_{D S}=\frac{W}{L} \frac{\mu_{N} C_{o x}}{2}\left(V_{G S}-V_{T}\right)^{2} \\
& 45 \mu A=\frac{W}{L} \frac{(270)\left(1.6 u F / u m^{2}\right) C_{o x}}{2}(0.1)^{2} \\
& W / L=21
\end{aligned}
$$

(c) Use 8.13(c) as the column pullup circuitry. The initial voltage is $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{T}}$.
(d) The voltage at the sources of the input transistors are both at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{T}}-\mathrm{V}_{\mathrm{T}}-0.1=0.7 \mathrm{~V}$.

The maximum allowable gate voltage of M_{5} is $0.7+\mathrm{V}_{\mathrm{T}}=1.2 \mathrm{~V}$. Choose 1.0 V .

$$
\begin{aligned}
& I_{D S}=\frac{W}{L} \frac{\mu_{N} C_{o x}}{2}\left(V_{G S}-V_{T}\right)^{2} \\
& 90 \mu A=\frac{W}{L} \frac{(270)\left(1.6 u F / u m^{2}\right) C_{o x}}{2}(1.0-0.5)^{2} \\
& W / L=1.7
\end{aligned}
$$

(e) Assume loads are in saturation and have $\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}=0.5 \mathrm{~V}$.

$$
\begin{aligned}
& I_{D S}=\frac{W}{L} \frac{\mu_{N} C_{o x}}{2}\left(V_{G S}-V_{T}\right)^{2} \\
& 45 \mu A=\frac{W}{L} \frac{(270)\left(1.6 u F / u m^{2}\right) C_{o x}}{2}(0.5)^{2} \\
& W / L=0.8
\end{aligned}
$$

Problem 5

For the logic circuit shown below, assume that the transmission gates are all $4 \lambda: 2 \lambda$ and that the inverters driving the transmission gates have PMOS transistors that are $8 \lambda: 2 \lambda$, and NMOS transistors that are $4 \lambda: 2 \lambda$, where $\lambda=0.1 \mu \mathrm{~m}$. The output inverter is to drive a 50 fF load. The output inverter is 4 times larger than the input inverters.
(a.) Write the logic expression for the output function in terms of A, B, sel, and selB.
(b.) Draw an equivalent $R C$ circuit model for the path from A to C assuming that the sel
 signal is high. Write down the individual contributions for each resistance and capacitance and place the total values at the appropriate nodes.
(c.) Find the Elmore delay from A to C.

Solution

(a.) OUT $=\mathrm{sel} \cdot \bar{A}+\overline{\mathrm{sel}} \cdot \bar{A}=(\overline{\mathrm{sel}}+A) \cdot(\mathrm{sel} \cdot B)=A \cdot \mathrm{sel}+B \cdot \mathrm{sel} B$
(b.) The equivalent $R C$ circuit model is shown below.

The quantities in this model are:

$$
\begin{aligned}
& R_{\text {inv }}=12.5 \mathrm{k} \Omega\left(\frac{2 \lambda}{4 \lambda}\right)=6.25 \mathrm{k} \Omega, C_{i n v}=C_{e f f}\left(W_{n}+W_{p}\right)=1 \mathrm{fF} / \mu \mathrm{m}(0.4 \mu \mathrm{~m}+0.8 \mu \mathrm{~m})=1.2 \mathrm{fF}, \\
& C_{e f f}(2 W)=1 \mathrm{fF} / \mu \mathrm{m}(0.8 \mu \mathrm{~m})=0.8 \mathrm{fF}, C_{g} W=2 \mathrm{fF} / \mu \mathrm{m}(0.4 \mu \mathrm{~m})=0.8 \mathrm{fF} \\
& R_{T G}=12.5 \mathrm{k} \Omega\left(\frac{2 \lambda}{4 \lambda}\right)=6.25 \mathrm{k} \Omega, \text { and } 4 C_{i n v}=4 C_{g} W=4(2 \mathrm{fF} / \mu \mathrm{m})(1.2 \mu \mathrm{~m})=9.6 \mathrm{fF}
\end{aligned}
$$

(c.) The Elmore delay from A to C is given as

$$
\begin{aligned}
t_{A C}= & 6.25 \mathrm{k} \Omega(1.2 \mathrm{fF}+0.8 \mathrm{fF}+0.8 \mathrm{fF})+(6.25 \mathrm{k} \Omega+6.25 \mathrm{k} \Omega)(0.8 \mathrm{fF}+0.8 \mathrm{fF}+0.8 \mathrm{fF}+9.6 \mathrm{fF}) \\
& =6.25 \mathrm{k} \Omega(2.8 \mathrm{fF})+6.25 \mathrm{k} \Omega(12 \mathrm{fF})=17.5 \mathrm{ps}+150 \mathrm{ps}=\underline{\underline{167} .5 \mathrm{ps}}
\end{aligned}
$$

