LECTURE 190 – CMOS TECHNOLOGY-COMPATIBLE DEVICES (READING: Text-Sec. 2.9)

INTRODUCTION

Objective

The objective of this presentation is examine devices that are compatible with CMOS technology

Outline

- Compatible active devices the BJT lateral transistor
- Latchup and ESD
- Temperature and noise characteristics
- Summary

 $ECE\,4430\,$ - Analog Integrated Circuits and Systems

© P.E. Allen - 2001

Page 190-2

Lecture 190 – CMOS Technology, Compatible Devices (10/28/01)

COMPATIBLE ACTIVE DEVICES

Lateral Bipolar Junction Transistor

P-Well Process

NPN Lateral-

Performance of the Lateral PNP BJT - Continued

Typical Performance for the 40 emitter dot LPNP BJT:

Transistor area	0.006 mm ²
Lateral ß	90
Lateral efficiency	0.70
Base resistance	150 Ω
E _n @ 5 Hz	2.46 nV / \(\ \ \ \ \ \ \ \ \ \ \ \ \ \
E _n (midband)	1.92 nV / V Hz
$f_{c}(E_{n})$	3.2 Hz
I _n @ 5 Hz	3.53 pA / \/ Hz
I _n (midband)	0.61 pA / \/ Hz
f _c (In)	162 Hz
f _T	85 MHz
Early voltage	16 V

ECE 4430 - Analog Integrated Circuits and Systems

Temperature Characteristics of Transistors

Fractional Temperature Coefficient

$$TCF = \frac{1}{x} \cdot \frac{\partial x}{\partial T}$$
 Typically in ppm/°C

MOS Transistor

$$V_T = V(T_0) + \alpha(T - T_0) + \cdots$$
, where $\alpha \approx -2.3 \text{mV}/^{\circ}\text{C}$ (200°K to 400°K)

$$\mu = K_{\mu}T^{-1.5}$$

BJT Transistor

Reverse Current, I_S:

$$\frac{1}{I_{S}} \cdot \frac{\partial I_{S}}{\partial T} = \frac{3}{T} + \frac{1}{T} \frac{V_{G0}}{kT/q}$$

Empirically, I_S doubles approximately every 5°C increase

Forward Voltage, v_D:

$$\frac{\partial v_D}{\partial T} = -\frac{V_{G0} - v_D}{T} - \frac{3kT/q}{T} \approx -2mV/^{\circ}C \text{ at } v_D = 0.6V$$

ECE 4430 - Analog Integrated Circuits and Systems

Lecture 190 – CMOS Technology, Compatible Devices (10/28/01)

Noise in Transistors

Shot Noise

 $\overline{i^2} = 2qI_D\Delta f \text{ (amperes}^2)$ where q = charge of an electron $I_D = dc$ value of i_D $\Delta f =$ bandwidth in Hz i² Noise current spectral density = $\overline{\Lambda f}$ (amperes²/Hz) Thermal Noise **Resistor:** $\overline{v^2} = 4kTR\Delta f \text{ (volts}^2)$ MOSFET: $\overline{i_D^2} = \frac{8kTg_m\Delta f}{3}$ (ignoring bottom gate) where k = Boltzmann's constantR = resistor or equivalent resistor in which the thermal noise is occurring. g_m = transconductance of the MOSFET

Page 190-12

© P.E. Allen - 2001

