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LECTURE 192 – CMOS PASSIVE COMPONENTS - I
(READING: Text-Sec. 2.10)

Objective
The objective of this presentation is:
1.) Examine the passive components that are compatible with CMOS technology
2.) Physical influence on passive components
Outline
•  Capacitors
•  Resistors
•  Summary
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Types of Capacitors in a MOSFET
Physical Picture:
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Fig120-06

FOX FOX

MOSFET capacitors consist of:
•  Depletion capacitances
•  Charge storage or parallel plate capacitances
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MOSFET Depletion Capacitors
Model:
1.)  vBS ≤ FC·PB
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where
AS = area of the source
PS = perimeter of the source
CJSW = zero bias, bulk source sidewall capacitance
MJSW = bulk-source sidewall grading coefficient

For the bulk-drain depletion capacitance replace "S" by "D" in the above.

SiO2

Polysilicon gate

Bulk

A B

CD

E
F

GH

Drain bottom = ABCD
Drain sidewall = ABFE + BCGF + DCGH + ADHE

Source Drain

Fig. 120-07
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Charge Storage (Parallel Plate) MOSFET Capacitances - C1, C2, C3 and C4

Overlap capacitances:
C1 = C3 = LD·Weff·Cox   = CGSO or CGDO
(LD ≈ 0.015 µm for LDD structures)

Channel capacitances:
C2 = gate-to-channel = CoxWeff·(L-2LD) =
CoxWeff·Leff

C4 = voltage dependent channel-
bulk/substrate capacitance
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Fig. 120-09
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Charge Storage (Parallel Plate) MOSFET Capacitances - C5
View looking down the channel from source to drain

Bulk

Overlap Overlap

Source/Drain
Gate

FOX FOXC5 C5

Fig120-10

C5 = CGBO
Capacitance values based on an oxide thickness of 140 Å or Cox=24.7 × 10-4  F/m2:

Type P-Channel N-Channel Units

CGSO 220 ×10-12 220 × 10-12 F/m

CGDO 220 × 10-12 220 × 10-12 F/m

CGBO 700 × 10-12 700 × 10-12 F/m

CJ 560 × 10-6 770 × 10-6 F/m2

CJSW 350 × 10-12 380 × 10-12 F/m

MJ 0.5 0.5
MJSW 0.35 0.38

Lecture 192 – CMOS Passive Components - I  (7/10/04) Page 192-6

ECE 4430  - Analog Integrated Circuit Design I © P.E. Allen - 2002

Expressions for CGD, CGS and CGB
Cutoff Region:

CGB = C2+2C5 = Cox(Weff)(Leff)

+ 2CGBO(Leff)

CGS = C1 ≈ Cox(LD)Weff = CGSO(Weff)

CGD = C3 ≈ Cox(LD)Weff = CGDO(Weff)

Saturation Region:
CGB = 2C5 = CGBO(Leff)

CGS = C1+(2/3)C2 = Cox(LD+0.67Leff)(Weff)

     = CGSO(Weff) + 0.67Cox(Weff)(Leff)

CGD = C3 ≈ Cox(LD)Weff) = CGDO(Weff)

Nonsaturated Region:
CGB = 2 C 5 = 2CGBO(Leff)

CGS = C1 + 0.5C2 = Cox(LD+0.5Leff)(Weff)

     = (CGSO + 0.5CoxLeff)Weff
CGD = C3 + 0.5C2 = Cox(LD+0.5Leff)(Weff)

     = (CGDO + 0.5CoxLeff)Weff

p+

p- substrate

Fig120-1
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Illustration of CGD, CGS and CGB

Comments on the variation of CBG in the cutoff region:

CBG = 
1

1
C2 + 

1
C4

  + 2C5

1.)  For vGS ≈ 0,  CGB ≈ C2 + 2C5

(C4 is large because of the thin

inversion layer in weak inversion

where VGS  is slightly less than VT))

2.)  For 0 < vGS ≤ VT,   CGB ≈ 2C5

(C4 is small because of the thicker
inversion layer in strong inversion)

0 vGS

CGS

CGS, CGD

CGD
CGB

CGS, CGD

C2 + 2C5

C1+ 0.67C2

C1,    C3
2C5

VT vDS +VT

Off Saturation Non-
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vDS = constant 
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Capacitance

C1+ 0.5C2

Fig120-12

C4 Large

C4 Small
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Characterization of Capacitors
•  C is the desired capacitance
•  Dissipation of a capacitor

Q = ωCRp

where Rp is the equivalent parallel resistance associated with the capacitor, C

•  A varactor is a variable capacitor
•  Cmax/Cmin ratio is the ratio of the largest value of capacitance to the smallest when the

capacitor is used as a varactor.
•  Parasitic capacitors are the capacitors to ac ground from both terminals of the desired

capacitance.
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Standard MOS Capacitors
Polysilicon-Oxide-Channel for Enhancement MOSFETs
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Channel

VDG = VGS > VT

Comments:
• The capacitance variation is achieved by changing the mode of operation from depletion

(minimum capacitance) to inversion (maximum capacitance).
•  Capacitance = CGS ≈ CoxW·L

•  Channel must be formed, therefore VGS > VT

•  With VGS > VT and VDS = 0, the transistor is in the active region.

•  LDD transistors will give lower Q because of the increase of series resistance.
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Standard MOS Capacitors - Continued
Bulk tuning of the polysilicon-oxide-channel capacitor (0.35µm CMOS)

-0.65V

vB
CG

1.0

0.8

0.6

0.4

0.2
0.0

-0.5-0.6-0.7-0.8-0.9-1.0-1.1-1.3-1.4-1.5 -1.2

CG

VT

vB (Volts)

V
ol

ts
 o

r 
pF

Fig. 192-02

Cmax/Cmin ≈ 4
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Standard MOS Capacitors - Continued
Bulk connected to Source-Drain
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Fig. 192-03

CG-D,S = CGS + CGB

Comments:
•  Capacitance is more constant as a function of VG-D,S

•  Still not a good capacitor for large voltage swings
•  Increased parasitics from the gate/bulk terminal

VT
VG-D,S

CG-D,S

CBGCGS

Fig. 192-04
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Standard Mode NMOS Varactor – Continued
More Detail - Includes the LDD transistor
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Fig. 192-05

Shown in accumulation mode

Best results are obtained when the drain-source are on ac ground.
Experimental Results (Q at 2GHz, 0.5µm CMOS):
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VG =1.8V:  Cmax/Cmin ratio = 2.15 (1.91), Qmax = 34.3 (5.4), and Qmin = 25.8(4.9)
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MOS Capacitors - Continued
Accumulation-Mode Capacitor† ††

Polysilicon
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Fig. 192-07

Comments:
•  Again, the capacitor variation is achieved by moving from the depletion (min. C) to
accumulation (max. C)
•  ±30% tuning range
•  Q  ≈ 25 for 3.1pF at 1.8 GHz  (optimization leads to Qs of 200 or greater)

                             
†   T. Soorapanth, et. al., “Analysis and Optimization of Accumulation-Mode Varactor for RF ICs,” Proc. 1998 Sym. on VLSI Circuits, Digest of
Papers, pp. 32-33, 1998.
††  R. Castello, et. al., “A ±30% Tuning Range Varactor Compatible with future Scaled Technologies,”  Proc. 1998 Sym. on VLSI Circuits, Digest of
Papers, pp. 34-35, 1998.
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Accumulation Capacitor – More Detail
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Shown in depletion mode.

Best results are obtained when the drain-source are on ac ground.
Experimental Results (Q at 2GHz, 0.5µm CMOS):
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VG = 0.6V:  Cmax/Cmin ratio = 1.69 (1.61), Qmax = 38.3 (15.0), and Qmin = 33.2(13.6)
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MOS Capacitors - Continued
Polysilicon-Oxide Diffusion/Active for Enhanced MOSFETs

FOX FOX

n-well

p-substrate

n-active

poly
IOXIOX IOX

A B

p-substrate

n-well
n-active

poly

A B

Unit capacitance ≈ 1.2 fF/µm2

Voltage dependence:
C(V) ≈ C(0) + a1V + a2V

2, where a1 ≈ 0 and a2 ≈ 210 ppm/V2

(Not as good linearity as poly-poly capacitors)
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MOS Capacitors - Continued
Polysilicon-Oxide-Polysilicon (Poly-Poly)

substrate

IOX
IOX

A B

IOX

FOX FOX

Polysilicon II

Polysilicon I

Best possible capacitor for analog circuits
Less parasitics
Voltage independent
Possible approach for increasing the voltage linearity:

Top Plate Top Plate

Bottom Plate Bottom Plate

A

BFig. 162-12
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Implementation of Capacitors using Available Interconnect Layers
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Fig. 192-13
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Horizontal Metal Capacitors
Capacitance between conductors on the same level and use lateral flux.

These capacitors are sometimes called fractal capacitors because the fractal patterns are
structures that enclose a finite area with a near-infinite perimeter.
The capacitor/area can be increased by a factor of 10 over vertical flux capacitors (i.e.,
1.5fF/µm2).
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To Be Continued
The next lecture will continue the examination of passive components compatible

with CMOS technology.


