LECTURE 210 - PHYSICAL ASPECTS OF ICs
 (READING: Text-Sec. 2.5, 2.6, 2.8)

INTRODUCTION

Objective

- Illustrate the physical aspects of integrated circuits

Outline

- Examples
- Identifying circuits from layouts
- Identifying cross-sections corresponding to a layout
- Extracting parasitics from layouts
- Summary

Example 1

Draw the schematic of the circuit corresponding to the CMOS layout.
Solution

Fig. 210-02

Example 2

Draw the A-A' cross-section to scale of the integrated layout shown. The approximate physical thicknesses are:
n^{+}diffusion $=0.5 \mu \mathrm{~m}$
p^{+}diffusion $=0.6 \mu \mathrm{~m}$
p-well depth $=3 \mu \mathrm{~m}$
Field oxide $(\mathrm{FOX})=4 \mu \mathrm{~m}$
Polysilicon $=1 \mu \mathrm{~m}$
Metal $=1 \mu \mathrm{~m}$
Thin oxide $=0.05 \mu \mathrm{~m}$
Intermediate oxide $(\mathrm{IOX})=1 \mu \mathrm{~m}$ (You may use square corners in the oxides and diffusions for purposes of simplicity.)

Solution

See drawing. The scale for this drawing vertically is $0.25 \mu \mathrm{~m}$ per square.

© P.E. Allen-2001

Example 3

For the MOS transistors of Example 1, find the bulk resistances between the source and drain of each transistor to the metal. Assume that the sheet resistance of the n^{+}is $35 \Omega / \mathrm{sq}$. and of the p^{+}is $80 \Omega / \mathrm{sq}$. Number each MOSFET and use this number to identify your answers.

Solution

"To the metal" means to the closest edge of the contacts. Therefore, the area of all sources and drains are the same, a rectangle which is $2 \mu \mathrm{~m}$ by $11 \mu \mathrm{~m}$. Thus,

$$
R_{S 1}=R_{D 1}=(35 \Omega / \mathrm{sq} .)(2 / 11)=6.364 \Omega
$$

and

$$
R_{S 2}=R_{D 2}=(80 \Omega / \mathrm{sq} .)(2 / 11)=14.546 \Omega
$$

Example 4

For the FETs of Example 1, find $C_{G S}, C_{G D}$, $C_{B D}$, and $C_{B S}$ for each transistor. Assume that the voltage across the voltage dependent capacitors is zero and no channel is formed (cutoff). The various capacitances for this example are:

$$
\mathrm{C}_{\mathrm{ox}}=0.7 \mathrm{fF} / \mu \mathrm{m}^{2}
$$

$\mathrm{LD}($ NMOS $)=0.45 \mu \mathrm{~m} \quad \mathrm{LD}($ PMOS $)=0.6 \mu \mathrm{~m}$
n^{+}diffusion to p -well (junction, bottom) $=0.33 \mathrm{fF} / \mu \mathrm{m}^{2}$
n^{+}diffusion sidewall (junction, sidewall) $=0.9 \mathrm{fF} / \mu \mathrm{m}$ p^{+}diffusion to substrate (junction, bottom) $=0.38 \mathrm{fF} / \mu \mathrm{n}$
p^{+}diffusion sidewall (junction, sidewall) $=1.0 \mathrm{fF} / \mu \mathrm{m}$
n-channel to bulk (junction, bottom) $=0.1 \mathrm{fF} / \mu \mathrm{m}^{2}$
n-channel to bulk (junction, sidewall) $=0.3 \mathrm{fF} / \mu \mathrm{m}$

p-channel to bulk (junction, bottom) $=0.1 \mathrm{fF} / \mu \mathrm{m}^{2}$
p-channel to bulk (junction, sidewall) $=0.3 \mathrm{fF} / \mu \mathrm{m}$

Example 4 - Continued

Solution

The area for all sources and drains is a rectangle $5 \mu \mathrm{~m}$ by $11 \mu \mathrm{~m}$.
Thus for M1,

$$
\begin{aligned}
C_{G D 1} & =C_{G S 1}=\mathrm{LD}(\mathrm{NMOS}) \mathrm{xWx} C_{o x} \\
& =0.45 \mu \mathrm{~m} \cdot 11 \mu \mathrm{~m} \cdot 0.7 \mathrm{fF} / \mu \mathrm{m}^{2}=3.465 \mathrm{fF} \\
& C_{G D 1}=C_{G S 1}=3.465 \mathrm{fF} \\
C_{B S 1} & =C_{B D 1}=\mathrm{W} \cdot \mathrm{~L} \cdot 0.33 \mathrm{fF} / \mu \mathrm{mm}^{2}+2(\mathrm{~W}+\mathrm{L}) 0.9 \mathrm{fF} / \mu \mathrm{m}^{2} \\
& =5 \cdot 11 \cdot 0.33+32 \cdot 0.9=18.15+28.8=46.95 \mathrm{fF}
\end{aligned}
$$

$$
C_{B S 1}=C_{B D 1}=46.95 \mathrm{fF}
$$

For M2, we get

$$
\begin{aligned}
& C_{G D 2}=C_{G S 2}=\mathrm{LD}(\mathrm{PMOS}) \mathrm{xWx} C_{o x}=0.6 \mu \mathrm{~m} \cdot 11 \mu \mathrm{~m} \cdot 0.7 \mathrm{fF} / \mu \mathrm{m}^{2}=4.62 \mathrm{fF} \\
C_{B S 2} & =C_{B D 2}=\mathrm{W} \cdot \mathrm{~L} \cdot 0.38 \mathrm{fF} / \mu \mathrm{m}^{2}+(2 \mathrm{~W}+2 \mathrm{~L}) \cdot 1.0 \mathrm{fF} / \mu \mathrm{m}^{2} \\
& =5 \cdot 11 \cdot 0.38+32 \cdot 1.0=20.9+32=52.9 \mathrm{fF}
\end{aligned}
$$

$$
C_{B S 2}=C_{B D 2}=52.9 \mathrm{fF}
$$

Example 5

Draw the schematic of the circuit indicated below in the BJT layout and identify the collector, base and emitter terminals.

Solution

Fig. 210-05

Example 6

Draw the A-A' cross-section to scale. The approximate physical thicknesses are:
n^{+}emitter diffusion $1.3 \mu \mathrm{~m}$
p-base diffusion $2.6 \mu \mathrm{~m}$
n-epitaxial layer $10 \mu \mathrm{~m}$
n^{+}buried collector diffusion (not seen from the top view) - into the epitaxial layer $4 \mu \mathrm{~m}$ and into the substrate $8 \mu \mathrm{~m}$
All oxide and metal thickness are approximately $1 \mu \mathrm{~m}$.
(You may approximate the oxides and diffusions with straight edges for simplicity.)

Solution

See layout.

Fig. 210-06

Example 7

What is the resistance of the poly resistor shown if the sheet resistance is $30 \Omega /$ sq.?

Corner squares should have $1 / 2$ of the normal sheet resistance

Fig. 210-07

Solution

Fig. 210-08
Resistance $=(10$ squares +0.5 sq. +0.5 sq. +0.33 sq. $) x 30 \Omega /$ sq. $=339 \Omega$

Example 8

A layout of two PMOS transistors both having a W/L of $20 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$ is shown. One of the layouts is concentric (M1) and the other is rectangular (M2). Find the value of $C_{B D}, C_{B S}, C_{G D}$ and $C_{G S}$ for both transistors. Assume zero-bias for any voltage dependent capacitors and that both transistors are saturated.
$\mathrm{C}_{\mathrm{ox}}=0.7 \mathrm{fF} / \mathrm{mm}^{2}$
$\operatorname{LD}($ NMOS $)=0.45 \mu \mathrm{~m} \quad \mathrm{LD}(\mathrm{PMOS})=0.6 \mu \mathrm{~m}$
n^{+}diffusion to p -well (junction, bottom) $=0.33 \mathrm{fF} / \mathrm{\mu m}^{2}$
n^{+}diffusion sidewall (junction, sidewall) $=0.9 \mathrm{fF} / \mu \mathrm{m}$ p^{+}diffusion to substrate (junction, bottom) $=0.38 \mathrm{fF} / \mathrm{mm}^{2}$ p^{+}diffusion sidewall (junction, sidewall) $=1.0 \mathrm{fF} / \mu \mathrm{m}$ n -channel to bulk (junction, bottom) $=0.1 \mathrm{fF} / \mathrm{\mu m}^{2}$ n -channel to bulk (junction, sidewall) $=0.3 \mathrm{fF} / \mathrm{\mu m}$ p-channel to bulk (junction, bottom) $=0.1 \mathrm{fF} / \mu \mathrm{m}^{2}$ p-channel to bulk (junction, sidewall) $=0.3 \mathrm{fF} / \mathrm{mm}$

Example 8 - Continued

Solution

M1:

SUMMARY

- Understanding the physical layout of transistors and passive components is very important for analog integrated circuit design
- The physical perspective gives the designer a feeling for the parasitics associated with the active and passive components
- Extraction of these parasitics requires knowledge of the physical layout

