LECTURE 215 - CHAPTER 2 - REVIEW PROBLEMS (READING: Text-Chapter 2)

Chapter 2 Topics

- Integrated Circuit Technology
- Bipolar Technology
- Passive Components in Bipolar Technology
- CMOS Technology
- CMOS Technology-Compatible Devices
- BiCMOS Technology

Problem 1

(a.) Sketch the approximate side view of a NMOS transistor in a p-substrate. Identify each region and identify the connections at the top surface of the integrated circuit for the source, drain, gate and bulk/substrate.

Solution

Fig.3.1-01

Problem 1-Continued

(b.) Sketch the approximate side view of a NPN vertical transistor in an n-epitaxial region which is on top of a p-substrate. Identify each region (including the $\mathrm{n}+$ buried layer) and identify the connection at the top surface of the integrated circuit for the base, emitter, collector and substrate.

Solution

ECE 4430 - Analog Integrated Circuits and Systems
© P.E. Allen - 2001

Lecture 215 - Chapter 2 - Review Problems (12/16/01)
Page 215-4

Problem 2

A layout of a NMOS transistor is shown.
(a.) Find the values of $R D$, and $R S$ in the schematic shown if the sheet resistance of the n^{+}is 35 $\Omega /$ sq. and the resistance of a single contact is 1Ω.
(b.) Find the values of $C_{B D}$ and $C_{B S}$ assuming the transistor is cutoff and the drain and source are at ground potential if $C J$ and $C J S W$ for an NMOS transistor are $770 \times 10-6 \mathrm{~F} / \mathrm{m}^{2}$ and $380 \times 10-12 \mathrm{~F} / \mathrm{m}$. Assume the capacitors are lumped and appear on the source/drain side of the bulk resistors in part (a.).

(c.) What is the W and L of this transistor?
(d.) If the overlap capacitor/unit length is $220 \times 10^{-12} \mathrm{~F} / \mathrm{m}$, what is $C_{G D}$?

Problem 2 - Continued

Solution

(a.) The area between the edge of the contacts to the polysilicon is $5 \mu \mathrm{~m}$ by $22 \mu \mathrm{~m}$. This represents a bulk resistance of $(5 / 22) \times 35 \Omega / \mathrm{sq} .=7.95 \Omega$. Adding 5 contacts in parallel gives

$$
R D=R S=7.95 \Omega+0.2 \Omega=8.15 \Omega .
$$

(b.) The area or the source and drain are equal and are $9 \mu \mathrm{~m}$ by $22 \mu \mathrm{~m}$ or $198 \mu \mathrm{~m}^{2}$. The perimeter of the source and drain are $2(9 \mu \mathrm{~m}+22 \mu \mathrm{~m})$ or $62 \mu \mathrm{~m}$. Therefore,

$$
\begin{gathered}
C_{B D}=C_{B S}=770 \times 10^{-6} / \mathrm{m}^{2} \times 198 \times 10^{-12} \mathrm{~m}^{2} \\
+380 \times 10^{-12} \mathrm{~F} / \mathrm{m} \times 62 \times 10^{-6} \mathrm{~m} \\
\underline{\underline{C}} \underline{\underline{B D}} \\
=\underline{=C_{B S}} \underline{\underline{S}}=152 \mathrm{fF}+24 \mathrm{fF}=176 \mathrm{fF}
\end{gathered}
$$

(c.) The $W=22 \mu \mathrm{~m}$ and the $L=2 \mu \mathrm{~m}$.
(d.) The overlap capacitor is

$$
\underline{\underline{C}}_{\underline{G D}}=220 \times 10^{-12} \mathrm{~F} / \mathrm{m} \times 22 \times 10^{-6} \mathrm{~m}=4.8 \mathrm{fF}
$$

Problem 3

A simple first-order filter shown is to be built with a polysilicon resistor and a MOS capacitor. The polysilicon resistor has a sheet resistance of $50 \Omega / \mathrm{sq} . \pm 30 \%$ and is $5 \mu \mathrm{~m}$ wide. The MOS capacitor is $2 \mathrm{fF} / \mu \mathrm{m}^{2} \pm 10 \%$. The -3 dB frequency of the lowpass filter is 1 MHz . (a.) Choose the $v_{\text {in }}$ size of the resistor (the number of squares, N) to minimize the total area of the filter including both the resistor and the capacitor. Find the area of the resistor and the capacitor in
 $\mu \mathrm{m}^{2}$ and their values. (b.) Using the worst-case tolerance of the resistor and capacitor, find the maximum and minimum -3 dB frequencies.

Solution

(a.) Value of $R=50 \Omega / \mathrm{sq} \cdot \mathrm{x} N$ sq. $=50 N \Omega$

Value of $C=2 \mathrm{fF} / \mathrm{m}^{2} \mathrm{x} A_{C} \mu \mathrm{~m}^{2}=2 A_{C} \mathrm{fF}$
Area of $C=A_{C}$
Area of $R=A_{R}=25 \mu \mathrm{~m}^{2} \mathrm{x} N=25 N \mu \mathrm{~m}^{2}$
Total Area $=A_{T}=\left(25 N+A_{C}\right) \mu \mathrm{m}^{2}$
We know that the $R C$ product is given as

$$
\begin{aligned}
& R C=\frac{1}{2 \pi \times 10^{6}}=(50 N)\left(2 A_{C^{\mathrm{X}}} 10^{-15}\right)=N A_{C} \times 10^{-13} \\
& \therefore A_{C}=\frac{1}{2 \pi \times 10^{-7} N}
\end{aligned}
$$

Problem 3-Continued

Thus, $\quad A_{T}=25 N+\frac{1}{2 \pi \times 10^{-7} N} \rightarrow \frac{d A_{T}}{d N}=25-\frac{1}{2 \pi \times 10^{-7} N^{2}}=0$
$\therefore N=\frac{1}{\sqrt{50 \pi \times 10^{-7}}}=252 \Rightarrow \underline{A}_{\underline{R}}=252 \times 25 \mu \mathrm{~m}^{2}=6308 \mu \mathrm{~m}^{2}$ and $A_{\underline{C}}=6308 \mu \mathrm{~m}^{2}$
Also, $\underline{R}_{\text {poly }}=R=252 \times 50 \Omega=12.6 \mathrm{k} \Omega \quad$ and $\quad \underline{C}_{M O S}=6308 \mu \mathrm{~m}^{2} \times 2 \mathrm{fF} / \mu^{2}=12.6 \mathrm{pF}$ (b.)

$$
\begin{aligned}
& \text { Maximum }-3 \mathrm{~dB} \text { frequency }=\frac{1}{2 \pi(0.7)(12.6 \mathrm{k} \Omega)(0.9)(12.6 \mathrm{pF})}=\underline{\underline{1.6 \mathrm{MHz}}} \\
& \text { Minimum }-3 \mathrm{~dB} \text { frequency }=\frac{1}{2 \pi(1.3)(12.6 \mathrm{k} \Omega)(1.1)(12.6 \mathrm{pF})}=\underline{\underline{0.7 \mathrm{MHz}}}
\end{aligned}
$$

Problem 4

A CMOS amplifier is shown along with the top view of the circuit layout assuming a pwell CMOS technology. Find the values of the capacitors shown in the circuit if

Type	P-Channel	N-Channel	Unit						
CGDO (CGSO)	220×10^{-12}	220×10^{-12}	F/m	0					
CGBO	700×10^{-12}	700×10^{-12}	F / m		p^{+}		,	p-well	-sub
CJ	560×10^{-6}	770×10^{-6}	$\mathrm{F} / \mathrm{m}^{2}$					-	
CJSW	350×10^{-12}	380×10^{-12}	F / m						
MJ	0.5	0.5							
MJSW	0.35	0.38					区		
$2\left\|\phi_{\mathrm{F}}\right\|$	0.7	0.8	V						
Based on an oxide thickness of 140 or $\mathrm{Cox}=24.7 \times 10^{-4} \mathrm{~F} / \mathrm{m}^{2}$. Solution $\begin{aligned} & C_{g d 1}=220 \times 10^{-12.10 \times 10^{-6}} \\ & \underline{C}_{g d 1}=2.2 \mathrm{fF} \\ & C_{g d 2}=220 \times 10^{-12.20 \times 10^{-6}} \\ & \underline{C}_{g d 1}=4.4 \mathrm{fF} \end{aligned}$									

Problem 4 - Continued

Next, we must find the area and perimeter of each drain.
$\mathrm{AD} 1=60 \mu \mathrm{~m}^{2} \& \mathrm{PD} 1=32 \mu \mathrm{~m}$
$\mathrm{AD} 2=120 \mu \mathrm{~m}^{2} \& \mathrm{PD} 2=52 \mu \mathrm{~m}$

$$
\begin{aligned}
& C_{b d 1}=\frac{\mathrm{CJ} \cdot \mathrm{AD} 1}{\left(1+\frac{2.5 \mathrm{~V}}{2 \mid \phi \mathrm{F}}\right)^{\mathrm{MJ}}}+\frac{\mathrm{CJSW} \cdot \mathrm{PD} 1}{\left(1+\frac{2.5 \mathrm{~V}}{2|\phi \mathrm{~F}|}\right) \mathrm{MJSW}}=\frac{770 \times 10^{-6} .60 \times 10^{-12}}{\left(1+\frac{2.5 \mathrm{~V}}{0.8}\right) 0.5}+\frac{380 \times 10^{-12.32 \times 10^{-6}}}{\left(1+\frac{2.5 \mathrm{~V}}{0.8}\right)^{0.38}} \\
& C_{b d 1}=22.75 \mathrm{fF}+7.10 \mathrm{fF}=29.84 \mathrm{fF} \\
& C_{b d 2}=\frac{\mathrm{CJ} \cdot \mathrm{AD} 2}{\left(\left.1+\frac{2.5 \mathrm{~V}}{2 \mid \phi \mathrm{F}} \right\rvert\, \mathrm{MJ}\right.}+\frac{\mathrm{CJSW} \cdot \mathrm{PD} 2}{\left(1+\frac{2.5 \mathrm{~V}}{2 \mid \phi \mathrm{F}}\right) \mathrm{MJSW}}=\frac{560 \times 10-6.120 \times 10^{-12}}{\left(1+\frac{2.5 \mathrm{~V}}{0.7}\right) 0.5}+\frac{350 \times 10-12.52 \times 10-6}{\left(1+\frac{2.5 \mathrm{~V}}{0.7}\right) 0.35} \\
& \underline{C}_{b d 2}=31.43 \mathrm{fF}+10.69 \mathrm{fF}=42.12 \mathrm{fF}
\end{aligned}
$$

Problem 5

A CMOS circuit is shown. Assume a p-well CMOS technology and draw the complete layout for the NMOS and PMOS transistors that has minimum rectangular area for the source and drain diffusions. Some pertinent design rules are listed below.

DR1 = distance from the square contact to diffusion from polysilicon $=2 \mu \mathrm{~m}$
$\mathrm{DR} 2=$ all contacts are to be square with a dimension of $2 \mu \mathrm{~m}$ by $2 \mu \mathrm{~m}$
DR3 $=$ the overlap of the contact by the diffusion or poly $=2 \mu \mathrm{~m}$
DR4 $=\mathrm{min}$. separation between n^{+}diffusion and p -well $=2 \mu \mathrm{~m}$

F99E1P1A

DR5 $=$ minimum overlap of contact by metal $=1 \mu \mathrm{~m}$
DR6 = poly must overlap the channel by $1 \mu \mathrm{~m}$
All metal widths are to be $4 \mu \mathrm{~m}$. Put as many contacts between the metal and diffusions as possible. Show the metal connections between transistors and indicate where metal goes for connections from transistors to external connections ($v_{\text {in }}$ and $v_{\text {out }}$ must be in metal). Use the indicated scheme below for identifying the various regions. If you wish to use colored pencil, use the scheme below or indicate which colors pertain to which region.

Problem 5 - Continued

Solution

Fig. F99E1S1B

Problem 6

This problem consists of a number of short questions

1. What is the resistance of the drain if the sheet resistance of n^{+}diffusion is $10 \Omega / \mathrm{sq}$.? What is the drain-bulk capacitance assuming $V_{B D}=0 \mathrm{~V}$ if bottom capacitance is $0.33 \mathrm{pF} / \mu \mathrm{m}^{2}$ and the sidewall capacitance is $0.9 \mathrm{fF} / \mu \mathrm{m}$?

$$
\begin{aligned}
& R_{n^{+}} \approx 10 \Omega / \mathrm{sq} \cdot \frac{8}{7}=11.43 \Omega \quad R_{n^{+}}=11.43 \Omega \\
& C_{B D}=0.33 \mathrm{pF} / \mu \mathrm{m}^{2} \times 70 \mu \mathrm{~m}^{2}+0.9 \mathrm{fF} / \mu \mathrm{m} \times 34 \mu \mathrm{~m}=23.1 \mathrm{fF}+30.6 \mathrm{fF}=53.7 \mathrm{fF} \\
& C_{B D}=53.7 \mathrm{fF}
\end{aligned}
$$

2. Why are contacts normally square and minimum size?

They are square because that is minimum area and they are minimum size because different size contacts do not etch evenly so small contacts are chosen for minimum contact area. Larger contacts are done by repeated use of minimum size contacts._
3. What is the function of the field oxide (FOX) in a CMOS technology? __The function of field oxide is to isolate the substrate from conductors on the surface.

Problem 6 - Continued

4. How are two BJT transistors fabricated in the same substrate electrically isolated from each other?
Each BJT is fabricated in its own n-epitaxial region surrounded on all sides by p material. This pn junction is reversed biased to electrically isolate the two transistors.
5. Assume that a $1 \mathrm{k} \Omega$ resistance of an IC process has a voltage coefficient of $-1000 \mathrm{ppm} / \mathrm{V}$. What is the resistance value if the average voltage across the resistor is increased from 0 to 5 V ?

$$
R(5 \mathrm{~V})=R(0 \mathrm{~V})-\frac{1000}{1,000,000} 5 \mathrm{~V} \times 1000 \Omega=1000 \Omega-5 \Omega=995 \Omega \quad R(5 \mathrm{~V})=995 \Omega
$$

6. List the 5 capacitances associated with the MOSFET operating in the saturation region and tell whether this capacitance is depletion or parallel plate or both.
1.) Gate -drain which is parallel plate \qquad
2.) Gate-source which is both parallel plate and depletion
3.) Bulk-drain which is depletion
4.) Bulk-source which is depletion
5.) Gate-bulk which is parallel plate \qquad

Problem 7

A top view of a CMOS push-pull amplifier is shown. Find the numerical value of all capacitances shown on the schematic. Assume that the dc value of the output is 2.5 V and the MJ and MJSW is 0.5 for both transistors.

Problem 7-Continued

Solution

M1:

$$
\begin{aligned}
& W_{1}=10 \mu \mathrm{~m}, L_{1}=2 \mu \mathrm{~m}, A S_{1}=A D_{1}=6 \mathrm{x} 10=60 \mu \mathrm{~m}^{2}, P S_{1}=P D_{1}=32 \mu \mathrm{~m} \\
& C_{G D 1}=10 \mu \mathrm{~m} \cdot 0.45 \mu \mathrm{~m} \cdot 0.7 \mathrm{fF} / \mu \mathrm{m}^{2}=3.15 \mathrm{fF} \\
& C_{B D 1}=\frac{\left[60 \mu \mathrm{~m}^{2} \cdot 0.33 \mathrm{fF} / \mathrm{m}^{2}+32 \mu \mathrm{~m} \cdot 0.9 \mathrm{fF} / \mu \mathrm{m}\right]}{\sqrt{1+\frac{2.5}{0.6}}}=\underline{21.38 \mathrm{fF}} \\
& C_{G S 1}=10 \mu \mathrm{~m} \cdot 0.45 \mu \mathrm{~m} \cdot 0.7 \mathrm{fF} / \mu \mathrm{m}^{2}+0.67\left[20 \mu \mathrm{~m}^{2} \cdot 0.7 \mathrm{fF} / \mathrm{m}^{2}\right]=\underline{\underline{12.48 \mathrm{fF}}}
\end{aligned}
$$

M2:

$$
\begin{aligned}
& W_{2}=20 \mu \mathrm{~m}, L_{2}=2 \mu \mathrm{~m}, A S_{2}=A D_{2}=6 \times 20=120 \mu \mathrm{~m}^{2}, P S_{2}=P D_{2}=52 \mu \mathrm{~m} \\
& C_{G D 2}=20 \mu \mathrm{~m} \cdot 0.6 \mu \mathrm{~m} \cdot 0.7 \mathrm{fF} / \mu \mathrm{m}^{2}=\underline{\underline{8.4 \mathrm{fF}}} \\
& C_{B D 2}=\frac{\left[120 \mu \mathrm{~m}^{2} \cdot 0.38 \mathrm{fF} / \mathrm{m}^{2}+52 \mu \mathrm{~m} \cdot 1 \mathrm{fF} / \mu \mathrm{m}\right]}{\sqrt{1+\frac{2.5}{0.6}}}=\underline{42.94 \mathrm{fF}} \\
& C_{G S 2}=20 \mu \mathrm{~m} \cdot 0.6 \mu \mathrm{~m} \cdot 0.7 \mathrm{fF} / \mathrm{m}^{2}+0.67\left[40 \mu \mathrm{~m}^{2} \cdot 0.7 \mathrm{fF} / \mathrm{m}^{2}\right]=\underline{\underline{\mathrm{fF}}}
\end{aligned}
$$

Problem 8

This problem consists of a number of short questions

1. List three functions of polysilicon.
(1)__Gate of a MOS transistor
(2)__Ohmic connection between two points
(3)_Resistor
(4)__Capacitor plate \qquad
2. In a CMOS technology, list three functions for the n^{+}or p^{+}diffusions.
(1) ___They can form the source or drain of a MOSFET \qquad
(2)___They are used to make an ohmic contact with metal
(3) ___They can be used as a resistor
(4)__Capacitor plate
3. Nitride is only used to define the active areas of transistors. True \qquad or False_X_
4. How are two NMOS transistors fabricated in the same substrate electrically isolated from each other?
They are fabricated in an oppositely doped substrate so that they can be reverse biased and thus isolated from the substrate and from each other.
5. What is the purpose of masks in an integrated circuit fabrication process?

To allow selective processing of an area of a wafer.

Problem 9

A CMOS layout is shown. (a.) Draw the schematic corresponding to this layout. What is this circuit? (b.) Find the value of $C_{B D}, C_{B S}, C_{G D}$ and $C_{G S}$ of all transistors. Assume zero-bias for any voltage dependent capacitors and that all transistors are saturated.

Solution

(a.) The schematic for this circuit is shown. The circuit is a simple NMOS current mirror.
(b.) There are two transistors that are identical. The drain areas and
 periphries are:

The sources are shared. We will simply divide the bulksource capacitances by two using the above area and periphery for the source.

$$
\begin{aligned}
& C_{B D}=0.33 \mathrm{fF} / \mu \mathrm{m}^{2} \mathrm{x} 65 \mu \mathrm{~m}^{2}+0.9 \mathrm{fF} / \mu \mathrm{m} \times 36 \mu \mathrm{~m}=21.4 \mathrm{fF}+32.4 \mathrm{fF}=53.85 \mathrm{fF} \\
& C_{B S}=0.5 \mathrm{x} C_{B D}=26.9 \mathrm{fF} \quad C_{G D}=C_{o L}=13 \mu \mathrm{mx} 0.45 \mu \mathrm{mx} 0.7 \mathrm{fF} / \mu \mathrm{m}^{2}=4.1 \mathrm{fF} \\
& C_{G S}=C_{o L}+0.67 \cdot \mathrm{~W} \cdot \mathrm{~L} \cdot C_{o x}=C_{o L}+0.67 \mathrm{x} 13 \mu \mathrm{mx} 2 \mu \mathrm{mx} 0.7 \mathrm{fF} / \mu \mathrm{m}^{2}=4.1 \mathrm{fF}+12.1 \mathrm{fF}=16.2 \mathrm{fF}
\end{aligned}
$$

$\therefore C_{B D}=53.85 \mathrm{fF}, C_{B S}=26.9 \mathrm{fF}, C_{G D}=4.1 \mathrm{fF}$, and $C_{G S}=16.2 \mathrm{fF}$

