LECTURE 300 – BUFFERED OP AMPS
(READING: AH – 352-368)

Objective
The objective of this presentation is:
1.) Illustrate the method of lowering the output resistance of simple op amps
2.) Show examples

Outline
• Open-loop, MOSFET buffered op amps
• Closed-loop MOSFET buffered op amps
• BJT output op amps
• Summary

Goal
To illustrate the degrees of freedom and choices of different circuit architectures that can enhance the performance of a given op amp.

What is a Buffered Op Amp?
A buffered op amp is an op amp with a low value of output resistance, R_O.
Typically, $10\,\Omega \leq R_O \leq 1000\,\Omega$

Requirements
Generally the same as for the output amplifier:
• Low output resistance
• Large output signal swing
• Low distortion
• High efficiency

Types of Buffered Op Amps
• Buffered op amps using MOSFETs
 With and without negative feedback
• Buffered op amps using BJTs
Source-Follower, Push-Pull Output Op Amp

\[R_{out} = \frac{1}{g_{m21} + g_{m22}} \leq 1000 \Omega, \ A_v(0) = 65 \text{dB} \ (I_{Bias}=50 \mu A), \ \text{and} \ GB = 60 \text{MHz for} \ C_L = 1 \text{pF} \]

Output bias current?

M18-M19-M21-M22 loop \[\Rightarrow V_{SG18} + V_{GS19} = V_{SG21} + V_{GS22} \]

which gives \[\sqrt{\frac{2I_{18}}{K_{PS18}}} + \sqrt{\frac{2I_{19}}{K_{NS19}}} = \sqrt{\frac{2I_{21}}{K_{PS21}}} + \sqrt{\frac{2I_{22}}{K_{NS22}}} \]

Crossover-Inverter, Buffer Stage Op Amp

Principle: If the buffer has high output resistance and voltage gain (common source), this is okay if when loaded by a small \(R_L \) the gain of this stage is approximately unity.

This op amp is capable of delivering 160mW to a 100\(\Omega \) load while only dissipating 7mW of quiescent power!
Crossover-Inverter, Buffer Stage Op Amp - Continued

How does the output buffer work?

The two inverters, M1-M3 and M2-M4 are designed to work over different regions of the buffer input voltage, $v_{in'}$.

Consider the idealized voltage transfer characteristic of the crossover inverters:

Crossover voltage $V_C = V_B - V_A \geq 0$

V_C is designed to be small and positive for worst case variations in processing (Maximum value of $V_C \approx 110$ mV)

Performance Results for the Crossover-Inverter, Buffer Stage CMOS Op Amp

<table>
<thead>
<tr>
<th>Specification</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>± 6 V</td>
</tr>
<tr>
<td>Quiescent Power</td>
<td>7 mW</td>
</tr>
<tr>
<td>Output Swing (100Ω Load)</td>
<td>8.1 Vpp</td>
</tr>
<tr>
<td>Open-Loop Gain (100Ω Load)</td>
<td>78.1 dB</td>
</tr>
<tr>
<td>Unity Gainbandwidth</td>
<td>260kHz</td>
</tr>
<tr>
<td>Voltage Spectral Noise Density at 1kHz</td>
<td>$1.7 \mu V/\sqrt{Hz}$</td>
</tr>
<tr>
<td>PSRR at 1kHz</td>
<td>55 dB</td>
</tr>
<tr>
<td>CMRR at 1kHz</td>
<td>42 dB</td>
</tr>
<tr>
<td>Input Offset Voltage (Typical)</td>
<td>10 mV</td>
</tr>
</tbody>
</table>
Compensation of Op Amps with Output Amplifiers

Compensation of a three-stage amplifier:

This op amp introduces a third pole, p'_{3} (what about zeros?)

With no compensation,

$$\frac{V_{\text{out}}(s)}{V_{\text{in}}(s)} = \frac{-A_{\text{VO}}}{\left(\frac{s}{p'_{1}} - 1\right)\left(\frac{s}{p'_{2}} - 1\right)\left(\frac{s}{p'_{3}} - 1\right)}$$

Illustration of compensation choices:

Muller compensation applied around both the second and the third stage.

Muller compensation applied around the second stage only.

Low Output Resistance Op Amp

To get low output resistance using MOSFETs, negative feedback must be used.

Ideal implementation:

Comments:

- The output resistance will be equal to $r_{ds1}||r_{ds2}$ divided by the loop gain
- If the error amplifiers are not perfectly matched, the bias current in M1 and M2 is not defined
Low Output Resistance Op Amp - Continued

Offset correction circuitry:

The feedback circuitry of the two error amplifiers tries to insure that the voltages in the loop sum to zero. Without the M9-M12 feedback circuit, there is no way to adjust the output for any error in the loop. The circuit works as follows:

When V_{OS} is positive, M6 tries to turn off and so does M6A. I_{M9} reduces thus reducing I_{M12}. A reduction in I_{M12} reduces I_{M8A} thus decreasing V_{GS8A}. V_{GS8A} ideally decreases by an amount equal to V_{OS}. A similar result holds for negative offsets and offsets in E_{A2}.

Low Output Resistance Op Amp - Continued

Error amplifiers:
Low Output Resistance Op Amp - Complete Schematic

Compensation:
Uses nulling Miller compensation.

Short circuit protection:
MP3-MN3-MN4-MP4-MP5
MN3A-MP3A-MP4A-MN4A-MN5A
(max. output ±60mA)

Table 7.1-2 Performance Characteristics of the Low Output Resistance Op Amp:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Simulated Results</th>
<th>Measured Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>7.0 mW</td>
<td>5.0 mW</td>
</tr>
<tr>
<td>Open Loop Voltage Gain</td>
<td>82 dB</td>
<td>83 dB</td>
</tr>
<tr>
<td>Unity Gainbandwidth</td>
<td>500kHz</td>
<td>420 kHz</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>0.4 mV</td>
<td>1 mV</td>
</tr>
<tr>
<td>PSRR+(0)/PSRR-(0)</td>
<td>85 dB/104 dB</td>
<td>86 dB/106 dB</td>
</tr>
<tr>
<td>PSRR+(1kHz)/PSRR-(1kHz)</td>
<td>81 dB/98 dB</td>
<td>80 dB/98 dB</td>
</tr>
<tr>
<td>THD (Vin = 3.3Vpp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL = 300Ω</td>
<td>0.03%</td>
<td>0.13%(1 kHz)</td>
</tr>
<tr>
<td>CL = 1000pF</td>
<td>0.08%</td>
<td>0.32%(4 kHz)</td>
</tr>
<tr>
<td>THD (Vin = 4.0Vpp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL = 15KΩ</td>
<td>0.05%</td>
<td>0.13%(1 kHz)</td>
</tr>
<tr>
<td>CL = 200pF</td>
<td>0.16%</td>
<td>0.20%(4 kHz)</td>
</tr>
<tr>
<td>Settling Time (0.1%)</td>
<td>3 µs</td>
<td><5 µs</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>0.8 V/µs</td>
<td>0.6 V/µs</td>
</tr>
<tr>
<td>1/f Noise at 1kHz</td>
<td>-</td>
<td>130 nV/√Hz</td>
</tr>
<tr>
<td>Broadband Noise</td>
<td>-</td>
<td>49 nV/√Hz</td>
</tr>
</tbody>
</table>

\[R_{out} \approx \frac{r_{ds61}||r_{ds6A}}{\text{Loop Gain}} = \frac{50k\Omega}{5000} = 10\Omega \]
Low-Output Resistance Op Amp - Continued

Component sizes for the low-resistance op amp:

<table>
<thead>
<tr>
<th>Transistor/Capacitor</th>
<th>µm/µm or pF</th>
<th>Transistor/Capacitor</th>
<th>µm/µm or pF</th>
</tr>
</thead>
<tbody>
<tr>
<td>M16</td>
<td>184/9</td>
<td>M8A</td>
<td>481/6</td>
</tr>
<tr>
<td>M17</td>
<td>66/12</td>
<td>M13</td>
<td>66/12</td>
</tr>
<tr>
<td>M8</td>
<td>184/6</td>
<td>M9</td>
<td>27/6</td>
</tr>
<tr>
<td>M1, M2</td>
<td>36/10</td>
<td>M10</td>
<td>6/22</td>
</tr>
<tr>
<td>M3, M4</td>
<td>194/6</td>
<td>M11</td>
<td>14/6</td>
</tr>
<tr>
<td>M3H, M4H</td>
<td>16/12</td>
<td>M12</td>
<td>140/6</td>
</tr>
<tr>
<td>M5</td>
<td>145/12</td>
<td>MP3</td>
<td>8/6</td>
</tr>
<tr>
<td>M6</td>
<td>2647/6</td>
<td>MN3</td>
<td>244/6</td>
</tr>
<tr>
<td>MRC</td>
<td>48/10</td>
<td>MP4</td>
<td>43/12</td>
</tr>
<tr>
<td>CC</td>
<td>11.0</td>
<td>MN4</td>
<td>12/6</td>
</tr>
<tr>
<td>M1A, M2A</td>
<td>88/12</td>
<td>MP5</td>
<td>6/6</td>
</tr>
<tr>
<td>M3A, M4A</td>
<td>196/6</td>
<td>MN3A</td>
<td>6/6</td>
</tr>
<tr>
<td>M3HA, M4HA</td>
<td>10/12</td>
<td>MP3A</td>
<td>337/6</td>
</tr>
<tr>
<td>M5A</td>
<td>229/12</td>
<td>MN4A</td>
<td>24/12</td>
</tr>
<tr>
<td>M6A</td>
<td>2420/6</td>
<td>MP4A</td>
<td>20/12</td>
</tr>
<tr>
<td>C_F</td>
<td>10.0</td>
<td>MN5A</td>
<td>6/6</td>
</tr>
</tbody>
</table>

Simpler Implementation of Negative Feedback to Achieve Low Output Resistance

Output Resistance:

\[R_{out} = \frac{R_o}{1 + |L_G|} \]

where

\[R_o = \frac{1}{g_{ds6} + g_{ds7}} \]

and

\[|L_G| = \frac{g_m^2}{2g_m^4(g_m6 + g_m7)R_o} \]

Therefore, the output resistance is

\[R_{out} = \frac{1}{(g_{ds6} + g_{ds7}) \left[1 + \frac{g_m^2}{2g_m^4(g_m6 + g_m7)R_o} \right]} \]
Example 7.1-1 - Low Output Resistance Using the Simple Shunt Negative Feedback Buffer

Find the output resistance of above op amp using the model parameters of Table 3.1-2.

Solution

The current flowing in the output transistors, M6 and M7, is 1mA which gives \(R_o \) of

\[
R_o = \frac{1}{(\lambda_N + \lambda_P)1mA} = \frac{1000}{0.09} = 11.11k\Omega
\]

To calculate the loop gain, we find that

\[
\begin{align*}
g_m2 &= \sqrt{2K_N' \cdot 10 \cdot 100\mu A} = 469\mu S \\
g_m4 &= \sqrt{2K_P' \cdot 1 \cdot 100\mu A} = 100\mu S
\end{align*}
\]

and

\[
g_m6 = \sqrt{2K_P' \cdot 10 \cdot 1000\mu A} = 1mS
\]

Therefore, the loop gain is

\[
|LG| = \frac{469}{100} \cdot 12 \cdot 11.11 = 104.2
\]

Solving for the output resistance, \(R_{out} \), gives

\[
R_{out} = \frac{11.11k\Omega}{1 + 104.2} = 106\Omega \quad \text{(Assumes that} \ R_L \text{is large)}
\]

BJTs Available in CMOS Technology

Illustration of an NPN substrate BJT available in a p-well CMOS technology:

Comments:

• \(g_m \) of the BJT is larger than the FET so that the output resistance w/o feedback is lower
• Can use the lateral or substrate BJT but since the collector is on ac ground, the substrate BJT is preferred
• Current is required to drive the BJT
Two-Stage Op Amp with a Class-A BJT Output Buffer Stage

Purpose of the M8-M9 source follower:
1.) Reduce the output resistance (includes whatever is seen from the base to ground divided by $1+\beta_F$)
2.) Reduces the output load at the drains of M6 and M7

Small-signal output resistance:

$$R_{out} = r_{\pi 10} + \frac{1}{gm9} + \frac{1}{gm9(1+\beta_F)}$$

$$= 51.6\Omega + 6.7\Omega = 58.3\Omega$$

where $I_{10}=500\mu A$, $I_8=100\mu A$, $W_9/L_9=100$ and β_F is 100

Maximum output voltage:

$$v_{OUT(max)} = V_{DD} - V_{SDS8(sat)} - v_{BE10} = V_{DD} - \sqrt{\frac{2K_p'}{I_8(W_8/L_8)}} - V_i \ln \left(\frac{I_{c10}}{I_{s10}} \right)$$

Voltage gain:

$$\frac{v_{out}}{v_{in}} = \left(g_{m1} + g_{m6} \left(g_{ds2} + g_{ds4} \right) + g_{m9} + g_{mbs9} + g_{ds8} + g_{\pi 10} + \frac{g_{m10}R_L}{1+g_{m10}R_L} \right)$$

Compensation will be more complex because of the additional stages.

Example 7.1-2 - Designing the Class-A, Buffered Op Amp

Use the parameters of Table 3.1-2 along with the BJT parameters of $I_s = 10^{-14}A$ and $\beta_F = 100$ to design the class-A, buffered op amp to give the following specifications.

Assume the channel length is to be 1µm.

$V_{DD} = 2.5V$ $V_{SS} = -2.5V$ $GB = 5MHz$ $A_{vdf}(0) \geq 5000V/V$ $Slew rate \geq 10V/\mu s$

$R_L = 500\Omega$ $R_{out} \leq 100\Omega$ $C_L = 100pF$ $ICMR = -1V$ to $2V$

Solution

Because the specifications above are similar to the two-stage design of Ex. 6.3-1, we can use these results for the first two stages of our design. However, we must convert the results of Ex. 6.3-1 to a PMOS input stage. The results of doing this give $W_1 = W_2 = 6\mu m$, $W_3 = W_4 = 7\mu m$, $W_5 = 11\mu m$, $W_6 = 43\mu m$, and $W_7 = 34\mu m$.

BJT follower:

$sR = 10V/\mu s$ and 100pF capacitor give $I_{11} = 1mA$.

If $W_1 = 44\mu m$, then $W_{11} = 44\mu m(1000\mu A/30\mu A) = 1467\mu m$.

$I_{11} = 1mA \Rightarrow 1/gm10 = 0.0258V/1mA = 25.8\Omega$

MOS follower:

To source 1mA, the BJT must provide 2mA which requires 20µA from the MOS follower. Therefore, select a bias current of 100µA for M8.

If $W_1 = 44\mu m$, then $W_8 = 44\mu m(100\mu A/30\mu A) = 146\mu m$.

\[\]
Example 7.1-2 - Continued

If $1/g_{m10}$ is 25.8Ω, then design g_{m9} as

$$g_{m9} = \frac{1}{R_{out} - (1/g_{m10})(1+\beta_{F})} = \frac{1}{(100-25.8)(101)} = 133.4\mu S$$

g_{m9} and $I_9 \Rightarrow W/L = 0.809$

Let us select $W/L = 10$ for M9 in order to make sure that the contribution of M9 to the output resistance is sufficiently small and to increase the gain closer to unity. This gives a transconductance of M9 of 469µS.

To calculate the voltage gain of the MOS follower we need to find g_{mbs9}.

$$\therefore \quad g_{mbs9} = \frac{g_{m9}\gamma_{N}}{2\sqrt{2\phi_{F} + V_{BS9}}} = \frac{469\cdot0.4}{2\sqrt{0.7+2}} = 57.1\mu S$$

where we have assumed that the value of V_{SB9} is approximately 2V.

$$\therefore \quad A_{MOS} = \frac{469\mu S + 57.1\mu S + 4\mu S + 5\mu S}{2} = 0.8765 \text{ V/V}.$$

The voltage gain of the BJT follower is

$$A_{BJT} = \frac{500}{25.8+500} = 0.951 \text{ V/V}.$$

Thus, the gain of the op amp is

$$A_{vd}(0) = (7777)(0.8765)(0.951) = 6483 \text{ V/V}.$$

The power dissipation of this amplifier is, $P_{diss.} = 5V(1255\mu A) = 6.27mW$

Two-Stage Op Amp with a Class-AB BJT Output Buffer Stage

This amplifier can reduce the quiescent power dissipation.

Slew Rate:

$$SR^+ = \frac{I^{+}_{OUT}}{C_L} = \frac{(1 + \beta_{F})I_7}{C_L} \quad \text{and} \quad SR^- = \frac{\beta_{9}(V_{DD} - 1V + |V_{SS}\rangle - V_{TB})^2}{2C_L}$$

If $\beta_{F} = 100$, $C_L = 1000pF$ and $I_7 = 95\mu A$ then $SR^+ = 8.59V/\mu s$.

Assuming a $W_9/L_9 = 60$ ($I_9 = 133\mu A$), ±2.5V power supplies and $C_L = 1000pF$ gives $SR^- = 35.9V/\mu s$.

(The current is not limited by I_7 as it is for the positive slew rate.)
Two-Stage Op Amp with a Class-AB BJT Output Buffer Stage

Small-signal characteristics:

Nodal equations:

\[
g_{m1}v_{in} = (G_I + sC_c)V_1 - sC_cV_2 + V_{out}
\]

\[
0 = (g_{mII} - sC_c)V_1 + (G_{II} + g_{\pi} + sC_c + sC_{\pi})V_2 - (g_{\pi} + sC_{\pi})V_{out}
\]

\[
0 \cong g_{m9}V_1 - (g_{m13} + sC_{\pi})V_2 + (g_{m13} + sC_{\pi})V_{out} \quad \text{where} \quad g_{\pi} > G_3
\]

The approximate voltage transfer function is:

\[
\frac{V_9(s)}{V_{in}(s)} \approx \frac{A_{v0}(s)}{(s/z_1 - 1)(s/z_2 - 1)}
\]

where

\[
A_{v0} = \frac{-g_{mll}g_{mll}}{G_I G_{II}}
\]

\[
z_1 = \frac{1}{G_{II}C_c - C_{\pi} \left[1 + \frac{g_{m9}}{g_{mll}} \right]}
\]

\[
z_2 = -\frac{g_{mll}g_{mll}C_c}{C_{\pi} \left[1 + \frac{g_{m9}}{g_{mll}} \right]}
\]

\[
p_1 = \frac{-G_I G_{II}}{g_{mll}C_c} \left[1 + \frac{g_{m9}}{g_{mll}} + \frac{C_{\pi}}{C_c} \left[\frac{G_I G_{II}}{g_{mll}g_{mll}} \right] \right]^{-1}
\]

\[
p_2 \cong \frac{-g_{mll}g_{mll}}{(g_{mll} + g_{m9})C_{\pi}}
\]

Two-Stage Op Amp with a Class-AB BJT Output Buffer Stage - Continued

Output stage current, \(I_{C8} \):

\[
I_{C8} = I_{D9} = \frac{S_9}{S_9} I_{D6} = \frac{60}{43} \times 95 \mu A = 133 \mu A
\]

Small-signal output resistance:

\[
r_{out} = \frac{r_{\pi} + R_{ll}}{1 + \beta_F} = \frac{19.668k\Omega + 116.96k\Omega}{101} = 1353 \Omega
\]

if \(I_6 = I_7 = 95 \mu A \), and \(\beta_F = 100 \).

Loading effect of \(R_L \) on the voltage transfer curve (increasing \(W_9/L_9 \) will improve the negative part at the cost of power dissipation):
Example 7.1-3 - Performance of the Two-Stage, Class AB Output Buffer

Using the transistor currents given above for the output stages (output stage of the two-stage op amp and the buffer stage), find the small-signal output resistance and the maximum output voltage when $R_L = 50\,\Omega$. Use the W/L values of Example 7.1-2 and assume that the NPN BJT has the parameters of $\beta_F = 100$ and $I_S = 10\,fA$.

Solution

It was shown on the previous slide that the small-signal output resistance is

$$r_{out} = \frac{r_{\pi} + r_{ds6}||r_{ds7}}{1+\beta_F} = \frac{19.668\,k\Omega + 116.96\,k\Omega}{101} = 1353\,\Omega$$

Obviously, the MOS buffer of Fig. 7.1-11 would decrease this value.

The maximum output voltage is given above is only valid if the load current is small. If this is not the case, then a better approach is to assume that all of the current in M7 becomes base current for Q8. This base current is multiplied by $1+\beta_F$ to give the sourcing current. If M9 is off, then all this current flows through the load resistor to give an output voltage of

$$v_{OUT}(max) \approx (1+\beta_F)I_7R_L$$

If the value of $v_{OUT}(max)$ is close to V_{DD}, then the source-drain voltage across M7 may be too small to be in saturation causing I_7 to decrease. Using the above equation, we calculate $v_{OUT}(max)$ as $(101)\cdot95\mu A\cdot50\,\Omega$ or 0.48V which is close to the simulation results shown using the parameters of Table 3.1-2.

SUMMARY

- A buffered op amp requires an output resistance between $10\,\Omega \leq R_O \leq 1000\,\Omega$
- Output resistance using MOSFETs only can be reduced by,
 - Source follower output ($1/g_m$)
 - Negative shunt feedback (frequency is a problem in this approach)
- Use of substrate (or lateral) BJT’s can reduce the output resistance because g_m is larger than the g_m of a MOSFET
- Adding a buffer stage to lower the output resistance will most like complicate the compensation of the op amp