LECTURE 300 – BUFFERED OP AMPS (READING: AH - 352-368)

Objective

The objective of this presentation is:

- 1.) Illustrate the method of lowering the output resistance of simple op amps
- 2.) Show examples

Outline

- Open-loop, MOSFET buffered op amps
- Closed-loop MOSFET buffered op amps
- BJT output op amps
- Summary

Goal

Lecture 300 - Buffered Op Amps (3/21/02)

<u>What is a Buffered Op Amp?</u>

A buffered op amp is an op amp with a low value of output resistance, R_o .

 $10\Omega \le R_0 \le 1000\Omega$ Typically,

Requirements

Generally the same as for the output amplifier:

- Low output resistance
- Large output signal swing
- Low distortion
- High efficiency

Types of Buffered Op Amps

- Buffered op amps using MOSFETs With and without negative feedback
- Buffered op amps using BJTs

Crossover-Inverter, Buffer Stage Op Amp

Principle: If the buffer has high output resistance and voltage gain (common source), this is okay if when loaded by a small R_L the gain of this stage is approximately unity.

This op amp is capable of delivering 160mW to a 100Ω load while only dissipating 7mW of quiescent power!

Crossover-Inverter, Buffer Stage Op Amp - Continued

How does the output buffer work?

The two inverters, M1-M3 and M2-M4 are designed to work over different regions of the buffer input voltage, v_{in} '.

Consider the idealized voltage transfer characteristic of the crossover inverters:

Crossover voltage = $V_C = V_B - V_A \ge 0$

 V_C is designed to be small and positive for worst case variations in processing (Maximum value of $V_C \approx 110$ mV)

ECE 6412 - Analog Integrated Circuit Design - II

Crossover-Inverter, Buffer Stage Op Amp - Continued

Performance Results for the Crossover-Inverter, Buffer Stage CMOS Op Amp

Specification	Performance
Supply Voltage	±6 V
Quiescent Power	7 mW
Output Swing (100Ω Load)	8.1 Vpp
Open-Loop Gain (100Ω Load)	78.1 dB
Unity Gainbandwidth	260kHz
Voltage Spectral Noise Density at 1kHz	$1.7 \ \mu V / \sqrt{Hz}$
PSRR at 1kHz	55 dB
CMRR at 1kHz	42 dB
Input Offset Voltage (Typical)	10 mV

© P.E. Allen - 2002

Low Output Resistance Op Amp

To get low output resistance using MOSFETs, negative feedback must be used. Ideal implementation:

Comments:

- The output resistance will be equal to $r_{ds1} || r_{ds2}$ divided by the loop gain
- If the error amplifiers are not perfectly matched, the bias current in M1 and M2 is not defined

Offset correction circuitry:

The feedback circuitry of the two error amplifiers tries to insure that the voltages in the loop sum to zero. Without the M9-M12 feedback circuit, there is no way to adjust the output for any error in the loop. The circuit works as follows:

When V_{OS} is positive, M6 tries to turn off and so does M6A. I_{M9} reduces thus reducing I_{M12} . A reduction in I_{M12} reduces I_{M8A} thus decreasing V_{GS8A} . V_{GS8A} ideally decreases by an amount equal to V_{OS} . A similar result holds for negative offsets and offsets in EA2.

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Lecture 300 - Buffered Op Amps (3/21/02)

Low Output Resistance Op Amp - Continued

Error amplifiers:

Lecture 300 – Buffered Op Amps (3/21/02)

Page 300-11

Lecture 300 – Buffered Op Amps (3/21/02)

Page 300-12

Low Output Resistance Op Amp - Continued

Table 7.1-2 Performance Characteristics of the Low Output Resistance Op Amp:

Specification	Simulated Results	Measured Results	
Power Dissipation	7.0 mW	5.0 mW	
Open Loop Voltage Gain	82 dB	3 83 dB	
Unity Gainbandwidth	500kHz	420 kHz	
Input Offset Voltage	0.4 mV	1 mV	
PSRR ⁺ (0)/PSRR ⁻ (0)	85 dB/104 dB	86 dB/106 dB	
PSRR ⁺ (1kHz)/PSRR ⁻ (1kHz)	81 dB/98 dB	80 dB/98 dB	
$\Gamma HD (V_{in} = 3.3V_{pp})$			
$R_{L} = 300\Omega$	0.03%	0.13%(1 kHz)	
CL = 1000 pF	0.08%	0.32%(4 kHz)	
$\Gamma HD (V_{in} = 4.0 V_{pp})$			
$R_L = 15K\Omega$	0.05%	0.13%(1 kHz)	
$C_L = 200 pF$	0.16%	0.20%(4 kHz)	
Settling Time (0.1%)	3 µs	<5 µs	
Slew Rate	$0.8 \text{ V}/\mu \text{s}$	$0.6 \text{ V}/\mu \text{s}$	
l/f Noise at 1kHz	-	$130 \text{ nV}/\sqrt{\text{Hz}}$	

Low-Output Resistance Op Amp - Continued

Component sizes for the low-resistance op amp:

Transistor/Capacitor	μ m/ μ m or pF	Transistor/Capacitor	μ m/ μ m or pF
M16	184/9	M8A	481/6
M17	66/12	M13	66/12
M8	184/6	M9	27/6
M1, M2	36/10	M10	6/22
M3, M4	194/6	M11	14/6
M3H, M4H	16/12	M12	140/6
M5	145/12	MP3	8/6
M6	2647/6	MN3	244/6
MRC	48/10	MP4	43/12
C _C	11.0	MN4	12/6
M1A, M2A	88/12	MP5	6/6
M3A, M4A	196/6	MN3A	6/6
M3HA, M4HA	10/12	MP3A	337/6
M5A	229/12	MN4A	24/12
M6A	2420/6	MP4A	20/12
C _F	10.0	MN5A	6/6
12 - Analog Integrated Circuit Design	1 - II		© P.E. Allen - 20

Lecture 300 – Buffered Op Amps (3/21/02)

Page 300-14

Simpler Implementation of Negative Feedback to Achieve Low Output Resistance

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Example 7.1-1 - Low Output Resistance Using the Simple Shunt Negative Feedback Buffer

Find the output resistance of above op amp using the model parameters of Table 3.1-2. *Solution*

The current flowing in the output transistors, M6 and M7, is 1mA which gives R_o of

$$R_o = \frac{1}{(\lambda_N + \lambda_P) 1 \text{mA}} = \frac{1000}{0.09} = 11.11 \text{k}\Omega$$

To calculate the loop gain, we find that

$$g_{m2} = \sqrt{2K_N' \cdot 10 \cdot 100 \mu A} = 469 \mu S$$

 $g_{m4} = \sqrt{2K_P' \cdot 1 \cdot 100 \mu A} = 100 \mu S$

and

 $g_{m6} = \sqrt{2K_P' \cdot 10 \cdot 1000 \mu A} = 1 \text{mS}$

Therefore, the loop gain is

$$|LG| = \frac{469}{100} \ 12.11.11 = 104.2$$

Solving for the output resistance, R_{out} , gives

$$R_{out} = \frac{11.11 \text{k}\Omega}{1 + 104.2} = 106\Omega \quad \text{(Assumes that } R_L \text{ is large)}$$

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Page 300-16

Lecture 300 – Buffered Op Amps (3/21/02)

BJTs Available in CMOS Technology

Illustration of an NPN substrate BJT available in a p-well CMOS technology:

Comments:

- g_m of the BJT is larger than the FET so that the output resistance w/o feedback is lower
- Can use the lateral or substrate BJT but since the collector is on ac ground, the substrate BJT is preferred
- Current is required to drive the BJT

Two-Stage Op Amp with a Class-A BJT Output Buffer Stage

Purpose of the M8-M9 source follower:

- 1.) Reduce the output resistance (includes whatever is seen from the base to ground divided by $1+\beta_F$)
- 2.) Reduces the output load at the drains of M6 and M7

Small-signal output resistance :

 $R_{out} \approx \frac{\tilde{r}_{\pi 10} + (\hat{1}/g_{m9})}{1 + \beta_F} = \frac{1}{g_{m10}} + \frac{1}{g_{m9}(1 + \beta_F)}$

= 51.6 Ω +6.7 Ω = 58.3 Ω where I_{10} =500 μ A, I_8 =100 μ A, W_9/L_9 =100 and β_F is 100 Maximum output voltage:

$$v_{OUT}(\max) = V_{DD} - V_{SD8}(\operatorname{sat}) - v_{BE10} = V_{DD} - \sqrt{\frac{2K_P}{I_8(W_8/L_8)}} - V_t \ln\left(\frac{I_{c10}}{I_{s10}}\right)$$

Voltage gain:

$$\frac{v_{out}}{v_{in}} = \left(\frac{g_{m1}}{g_{ds2} + g_{ds4}}\right) \left(\frac{g_{m6}}{g_{ds6} + g_{ds7}}\right) \left(\frac{g_{m9}}{g_{m9} + g_{mbs9} + g_{ds8} + g_{\pi 10}}\right) \left(\frac{g_{m10}R_L}{1 + g_{m10}R_L}\right)$$

Compensation will be more complex because of the additional stages.

ECE 6412 - Analog Integrated Circuit Design - II

Lecture 300 – Buffered Op Amps (3/21/02)

Example 7.1-2 - Designing the Class-A, Buffered Op Amp

Use the parameters of Table 3.1-2 along with the BJT parameters of $I_s = 10^{-14}$ A and $\beta_F = 100$ to design the class-A, buffered op amp to give the following specifications. Assume the channel length is to be 1µm.

 $V_{DD} = 2.5 \text{V}$ $V_{SS} = -2.5 \text{V}$ GB = 5 MHz $A_{vd}(0) \ge 5000 \text{V/V}$ Slew rate $\ge 10 \text{V/}\mu\text{s}$ $R_L = 500 \Omega$ $R_{out} \le 100 \Omega$ $C_L = 100 \text{pF}$ ICMR = -1 V to 2 VSolution

Because the specifications above are similar to the two-stage design of Ex. 6.3-1, we can use these results for the first two stages of our design. However, we must convert the results of Ex. 6.3-1 to a PMOS input stage. The results of doing this give $W_1 = W_2 = 6\mu m$, $W_3 = W_4 = 7\mu m$, $W_5 = 11\mu m$, $W_6 = 43\mu m$, and $W_7 = 34\mu m$.

BJT follower:

SR = 10V/µs and 100pF capacitor give $I_{11} = 1$ mA.

:. If $W_{13} = 44 \mu m$, then $W_{11} = 44 \mu m (1000 \mu A/30 \mu A) = 1467 \mu m$.

 $I_{11} = 1 \text{mA} \implies 1/g_{m10} = 0.0258 \text{V}/1 \text{mA} = 25.8 \Omega$

MOS follower:

To source 1mA, the BJT must provide 2mA which requires 20μ A from the MOS follower. Therefore, select a bias current of 100μ A for M8.

If $W_{12} = 44 \mu m$, then $W_8 = 44 \mu m (100 \mu A/30 \mu A) = 146 \mu m$.

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Page 300-18

© P.E. Allen - 2002

Example 7.1-2 - Continued

If $1/g_{m10}$ is 25.8 Ω , then design g_{m9} as

 $g_{m9} = \frac{1}{(R_{out} - (1/g_{m10}))(1+\beta_F)} = \frac{1}{(100-25.8)(101)} = 133.4\mu S \quad g_{m9} \text{ and } I_9 \implies W/L = 0.809$

Let us select W/L = 10 for M9 in order to make sure that the contribution of M9 to the output resistance is sufficiently small and to increase the gain closer to unity. This gives a transconductance of M9 of 469µS.

To calculate the voltage gain of the MOS follower we need to find g_{mbs9} .

$$\therefore \qquad g_{mbs9} = \frac{g_{m9}\gamma_N}{2\sqrt{2\phi_F + V_{BS9}}} = \frac{469 \cdot 0.4}{2\sqrt{0.7 + 2}} = 57.1 \mu S$$

where we have assumed that the value of V_{SB9} is approximately 2V.

$$\therefore \qquad A_{MOS} = \frac{469\mu S}{469\mu S + 57.1\mu S + 4\mu S + 5\mu S} = 0.8765 \text{ V/V}.$$

The voltage gain of the BJT follower is

$$A_{BJT} = \frac{500}{25.8 + 500} = 0.951 \text{ V/V}$$

Thus, the gain of the op amp is

$$A_{vd}(0) = (7777)(0.8765)(0.951) = 6483 \text{ V/V}$$

The power dissipation of this amplifier is,

```
ECE 6412 - Analog Integrated Circuit Design - II
```

Lecture 300 – Buffered Op Amps (3/21/02)

Two-Stage Op Amp with a Class-AB BJT Output Buffer Stage

This amplifier can reduce the quiescent power dissipation.

 V_{DD} M7 M10 08 95µA M2 133µA Vout)I_{Bias} M4 M9 M3 M6 Output VSS Buffer Fig. 7.1-12

 $P_{diss} = 5V(1255\mu A) = 6.27mW$

Slew Rate:

$$SR^{+} = \frac{I_{OUT}^{+}}{C_{L}} = \frac{(1 + \beta_{F})I_{7}}{C_{L}} \qquad \text{and} \qquad SR^{-} = \frac{\beta_{9}(V_{DD} - 1V + |V_{SS}| - V_{T0})^{2}}{2C_{L}}$$

If $\beta_F = 100$, $C_L = 1000$ pF and $I_7 = 95\mu$ A then $SR^+ = 8.59$ V/ μ s.

Assuming a $W_9/L_9 = 60$ ($I_9 = 133\mu$ A), ±2.5V power supplies and $C_L = 1000$ pF gives SR= 35.9V/µs.

(The current is not limited by I_7 as it is for the positive slew rate.)

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

© P.E. Allen - 2002

Two-Stage Op Amp with a Class-AB BJT Output Buffer Stage - Continued

Output stage current, I_{C8} :

$$I_{C8} = I_{D9} = \frac{S_9}{S_6} I_{D6} = \frac{60}{43} 95 \mu A = 133 \mu A$$

Small-signal output resistance:

$$r_{\text{out}} = \frac{r_{\pi} + R_{II}}{1 + \beta_F} = \frac{19.668 \text{k}\Omega + 116.96 \text{k}\Omega}{101} = 1353\Omega$$

if $I_6 = I_7 = 95 \mu A$, and $\beta_F = 100$.

Loading effect of R_L on the voltage transfer curve (increasing W_9/L_9 will improve the negative part at the cost of power dissipation):

Lecture 300 – Buffered Op Amps (3/21/02)

Example 7.1-3 - Performance of the Two-Stage, Class AB Output Buffer

Using the transistor currents given above for the output stages (output stage of the two-stage op amp and the buffer stage), find the small-signal output resistance and the maximum output voltage when $R_L = 50\Omega$. Use the W/L values of Example 7.1-2 and assume that the NPN BJT has the parameters of $\beta_F = 100$ and $I_S = 10$ fA.

Solution

It was shown on the previous slide that the small-signal output resistance is

$$r_{out} = \frac{r_{\pi} + r_{ds6} || r_{ds7}}{1 + \beta_F} = \frac{19.668 \text{k}\Omega + 116.96 \text{k}\Omega}{101} = 1353\Omega$$

Obviously, the MOS buffer of Fig. 7.1-11 would decrease this value.

The maximum output voltage is given above is only valid if the load current is small. If this is not the case, then a better approach is to assume that all of the current in M7 becomes base current for Q8. This base current is multiplied by $1+\beta_F$ to give the sourcing current. If M9 is off, then all this current flows through the load resistor to give an output voltage of

 $v_{OUT}(\max) \approx (1+\beta_F)I_7R_L$

If the value of $v_{OUT}(\max)$ is close to V_{DD} , then the source-drain voltage across M7 may be too small to be in saturation causing I_7 to decrease. Using the above equation, we calculate $v_{OUT}(\max)$ as (101)·95µA·50 Ω or 0.48V which is close to the simulation results shown using the parameters of Table 3.1-2.

ECE 6412 - Analog Integrated Circuit Design - II

Lecture 300 – Buffered Op Amps (3/21/02)

SUMMARY

- A buffered op amp requires an output resistance between $10\Omega \le R_0 \le 1000\Omega$
- Output resistance using MOSFETs only can be reduced by,
 - Source follower output $(1/g_m)$
 - Negative shunt feedback (frequency is a problem in this approach)
- Use of substrate (or lateral) BJT's can reduce the output resistance because g_m is larger than the g_m of a MOSFET
- Adding a buffer stage to lower the output resistance will most like complicate the compensation of the op amp

© P.E. Allen - 2002