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LECTURE 340 – LOW NOISE OP AMPS
(READING: AH – 402-414, GHLM – 788-798)

Objective
The objective of this presentation is:
1.)  Review the principles of low noise design
2.)  Show how to reduce the noise of op amps
Outline
•  Review of noise analysis
•  Low noise op amps
•  Low noise op amps using lateral BJTs
•  Low noise op amps using doubly correlated sampling
•  Summary
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Introduction
Why do we need low noise op amps?
Dynamic range:

Signal-to-noise ratio (SNR)

= 
Maximum RMS Signal

Noise  

    (SNDR includes both noise and distortion)
Consider a 14 bit digital-to-analog converter with a 1V reference with a bandwidth of
1MHz.

Maximum RMS signal is 
0.5V

2  = 0.3535 Vrms

A 14 bit D/A converter requires 14x6dB dynamic range or 84 dB or 16,400.

∴  The value of the least significant bit (LSB) = 
0.3535
16,400  = 21.6µVrms

If the equivalent input noise of the op amp is not less than this value, then the LSB
cannot be resolved and the D/A converter will be in error.  An op amp with an equivalent
input-noise spectral density of 10nV/ Hz will have an rms noise voltage of approximately
(10nV/ Hz)(1000 Hz) = 10µVrms in a 1MHz bandwidth.

����

����
����VDD

Noise + Distortion

Dynamic Range = 6dBx(Number. of bits)

Fig. 7.5-0B
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Transistor Noise Sources (Low-Frequency)
Drain current model:
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Minimization of Noise in Op Amps
1.) Maximize the signal gain as close to the input as possible.  (As a consequence, only

the input stage will contribute to the noise of the op amp.)
2.) To minimize the 1/f noise:

a.)  Use PMOS input transistors with appropriately selected dc currents and W  and L
values.

b.)  Use lateral BJTs to eliminate the 1/f noise.
c.)  Use chopper stabilization to reduce the low-frequency noise.

Noise Analysis
1.) Insert a noise generator for each transistor that contributes to the noise.  (Generally

ignore the current source transistor of source-coupled pairs.)
2.) Find the output noise voltage across an open-circuit or output noise current into a

short circuit.
3.)  Reflect the total output noise back to the input resulting in the equivalent input noise

voltage.
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A Low-Noise, Two-Stage, Miller Op Amp
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The total output-noise voltage spectral density, e
2
to, is as follows where gm8(eff) ≈ 1/rds1,
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1/f Noise of a Two-Stage, Miller Op Amp
Consider the 1/f noise:
Therefore the noise generators are replaced by,

e
2
ni = 

B
fWiLi

        (V2/Hz) and i
2
ni = 

2BK’Ii
fLi2

        (A2/Hz)

Therefore, the approximate equivalent input-noise voltage spectral density is,

e
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Comments;

•  Because we have selected PMOS input transistors, e
2

n1 has been minimized if we
choose W1L1 (W2L2) large.

•  Make L1<<L3 to remove the influence of the second term in the brackets.
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Thermal Noise of a Two-Stage, Miller Op Amp
Let us focus next on the thermal noise:
The noise generators are replaced by,

e
2
ni ≈ 

8kT
3gm

       (V2/Hz) and i
2
ni ≈ 

8kTgm
3     (A2/Hz)

where the influence of the bulk has been ignored.
The approximate equivalent input-noise voltage spectral density is,

e
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Comments:
•  The choices that reduce the 1/f noise also reduce the thermal noise.

Noise Corner:
Equating the equivalent input-noise voltage spectral density for the 1/f noise and the
thermal noise gives the noise corner, fc, as

fc = 
3gmB

8kTWL 
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Example 7.5-1  Design of A Two-Stage, Miller Op Amp for Low 1/f Noise
Use the parameters of Table 3.1-2 along with the value of KF = 4x10-28 F·A for

NMOS and 0.5x10-28 F·A for PMOS and design the previous op amp to minimize the 1/f
noise.  Calculate the corresponding thermal noise and solve for the noise corner
frequency.  From this information, estimate the rms noise in a frequency range of 1Hz to
100kHz.  What is the dynamic range of this op amp if the maximum signal is a 1V peak-
to-peak sinusoid?
Solution
1.)  The 1/f noise constants, BN and BP are calculated as follows.

BN = 
KF

2CoxKN’ = 
4x10-28F·A

 2·24.7x10-4F/m2·110x10-6A2/V = 7.36x10-22 (V·m)2

and

BP = 
KF

2CoxKP’ = 
0.5x10-28F·A

 2·24.7x10-4F/m2·50x10-6A2/V = 2.02x10-22 (V·m)2

2.)  Now select the geometry of the various transistors that influence the noise
performance.

To keep e
2
n1 small, let W1  = 100µm and L1 = 1µm.   Select W3 = 100µm and L3 =

20µm and letW8 and L8 be the same as W1 and L1 since they little influence on the noise.
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Example 7.5-1  - Continued
Of course, M1 is matched with M2, M3 with M4, and M8 with M9.

∴ e
2
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Note at 100Hz, the voltage noise in a 1Hz band is ≈ 4.7x10-14V2(rms) or 0.216µV(rms).
3.)  The thermal noise at room temperature is

e
2
n1 = 

8kT
3gm

 = 
8·1.38x10-23·300

3·707x10-6  = 1.562x10-17 (V2/Hz)

which gives

e
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4.)  The noise corner frequency is found by equating the two expressions for e
2
eq  to get

fc = 
4.689x10-12

4.164x10-17 = 112.6kHz

This noise corner is indicative of the fact that the thermal noise is much less than the 1/f
noise.

Lecture 340 – Low Noise Op Amps  (3/26/02) Page 340-10

ECE 6412  - Analog Integrated Circuit Design - II © P.E. Allen - 2002

Example 7.5-1  - Continued
5.)  To estimate the rms noise in the bandwidth from 1Hz to 100,000Hz, we will ignore
the thermal noise and consider only the 1/f noise.  Performing the integration gives

Veq(rms)2 = 
⌡


⌠

1

105

4.689x10-12

f df  = 4.689x10-12[ln(100,000) - ln(1)]

  = 0.540x10-10 Vrms2 = 7.34 µVrms
The maximum signal in rms is 0.353V.  Dividing this by 7.34µV gives 48,044 or 93.6dB
which is equivalent to about 15 bits of resolution.
6.)  Note that the design of the remainder of the op amp will have little influence on the
noise and is not included in this example.
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Lateral BJT
Since the 1/f noise is associated with current flowing at the surface of the channel, the
lateral BJT offers a lower 1/f noise input device because the majority of current flows
beneath the surface.

��������n+ p+ n+ n+n+

p-well

n-substrate

Base Emitter
Vertical Collector (VDD)

Base

Emitter

Lateral
Collector

Lateral
Collector

Vertical
Collector

(VDD)

Cross-section of a NPN lateral BJT. Symbol. Fig. 7.5-3

Comments:
•  Base of the BJT is the well
•  Two collectors-one horizontal (desired) and one vertical (undesired)

•  Collector efficiency is defined as 
Lateral collector current
Total collector current   and is 60-70%

•  Reverse biased collector-base acts like a photodetector and is often used for light-
sensing purposes
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Field-Aided Lateral BJT
Polysilicon gates are used to ensure that the region beneath the gate does not invert
forcing all current flow away from the surface and further eliminating the 1/f noise.

��������n+ p+ n+ n+n+

p-well

n-substrate

Base
Emitter

Vertical Collector (VDD)

Base

Emitter

Lateral
Collector

Lateral
Collector

Vertical
Collector

(VDD)

Cross-section of a field-aided NPN lateral BJT. Symbol. Fig. 7.5-4
����

Gates

Gate



Lecture 340 – Low Noise Op Amps  (3/26/02) Page 340-13

ECE 6412  - Analog Integrated Circuit Design - II © P.E. Allen - 2002

Physical Layout of a Lateral PNP Transistor
  Experimental Results for

a x40 PNP lateral BJT:
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Generally, the above structure is made as small as
possible and then paralleled with identical
geometries to achieve the desired BJT.
Low-Noise Op Amp using Lateral BJT’s at the

Characteristic Value
Transistor area 0.006mm2

Lateral β 90
Lateral
efficiency

70%

Base resistance 150Ω
en at 5 Hz 2.46nV/ Hz
en at midband 1.92nV/ Hz
fc(en) 3.2Hz

in at 5 Hz 3.53pA/ Hz
in at midband 0.61pA/ Hz
fc(in) 162 Hz

fT 85 MHz

Early voltage 16V
1.2µm CMOS with n-well
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Summary of Experimental Performance for the Low-Noise Op Amp

Experimental Performance Value
Circuit area (1.2µm) 0.211 mm2

Supply Voltages ±2.5 V
Quiescent Current 2.1 mA
-3dB frequency (at a gain of 20.8 dB) 11.1 MHz
en at 1Hz 23.8 nV/ Hz
en (midband) 3.2 nV/ Hz
fc(en) 55 Hz

in at 1Hz 5.2 pA/ Hz
in (midband) 0.73 pA/ Hz
fc(in) 50 Hz
Input bias current 1.68 µA
Input offset current 14.0 nA
Input offset voltage 1.0 mV
CMRR(DC) 99.6 dB
PSRR+(DC) 67.6 dB

PSRR-(DC) 73.9 dB
Positive slew rate (60 pF, 10 kΩ load) 39.0 V/µS
Negative slew rate (60 pF, 10 kΩ load) 42.5 V/µS
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Chopper-Stabilized Op Amps - Doubly Correlated Sampling (DCS)
Illustration of the use of chopper stabilization to remove the undesired signal, vu, form the
desired signal, vin.
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Fig. 7.5-8  
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Chopper-Stabilized Amplifier
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Fig. 7.5-10

Chopper-stabilized Amplifier:
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Experimental Noise Response of the Chopper-Stabilized Amplifier
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Comments:
 • The switches in the chopper-stabilized op amp introduce a thermal noise equal to kT/C

where k is Boltzmann’s constant, T  is absolute temperature and C are capacitors
charged by the switches (parasitics in the case of the chopper-stabilized amplifier).

 •  Requires two-phase, non-overlapping clocks.
 •  Trade-off between the lowering of 1/f noise and the introduction of the kT/C noise.
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SUMMARY
•  Primary sources of noise for CMOS circuits is thermal and 1/f
•  Noise analysis:

1.) Insert a noise generator for each transistor that contributes to the noise.
(Generally ignore the current source transistor of source-coupled pairs.)

2.) Find the output noise voltage across an open-circuit or output noise current into a
short circuit.

3.) Reflect the total output noise back to the input resulting in the equivalent input
noise voltage.

•  Noise is reduced in op amps by making the input stage gain as large as possible and
reducing the noise of this stage as much as possible.

•  The input stage noise can be reduced by using lateral BJTs (particularily the 1/f noise)
•  Doubly correlated sampling can transfer the noise at low frequencies to the clock

frequency (this technique is used to achieve low input offset voltage op amps).


