# LECTURE 360 – CHARACTERIZATION OF COMPARATORS (READING: AH – 439-444)

## **Objective**

The objective of this presentation is:

- 1.) Introduction to the comparator
- 2.) Characterization of the comparator

#### **Outline**

- Static characterization
- Dynamic characterization
- Summary

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Lecture 360 – Characterization of Comparators (4/4/02)

Page 360-2

# What is a Comparator?

The comparator is essentially a 1-bit analog-digital converter.

Input is analog

Output is digital

Types of comparators:

- 1.) Open-loop (op amps without compensation)
- 2.) Regenerative (use of positive feedback latches)
- 3.) Combination of open-loop and regenerative comparators

## **Circuit Symbol for a Comparator**



#### **Static Characteristics**

- Gain
- Output high and low states
- Input resolution
- Offset
- Noise

## **Dynamic Characteristics**

- Propagation delay
- Slew rate

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Lecture 360 – Characterization of Comparators (4/4/02)

Page 360-4

# **Noninverting and Inverting Comparators**

The comparator output is binary with the two-level outputs defined as,

 $V_{OH}$  = the high output of the comparator

 $V_{OL}$  = the low level output of the comparator

Voltage transfer function of an Noninverting and Inverting Comparator:



## Static Characteristics - Zero-order Model for a Comparator

Voltage transfer function curve:



Model:



Gain =  $A_v = \lim_{\Delta V \to 0} \frac{V_{OH} - V_{OL}}{\Delta V}$  where  $\Delta V$  is the input voltage change

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Lecture 360 – Characterization of Comparators (4/4/02)

Page 360-6

# Static Characteristics - First-Order Model for a Comparator

Voltage transfer curve:



where for a noninverting comparator,

 $V_{IH}$  = smallest input voltage at which the output voltage is  $V_{OH}$ 

 $V_{IL}$  = largest input voltage at which the output voltage is  $V_{OL}$ 

#### Model:



ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

## Static Characteristics - First-Order Model including Input Offset Voltage

Voltage transfer curve:



 $V_{OS}$  = the input voltage necessary to make the output equal  $\frac{V_{OH}+V_{OL}}{2}$  when  $v_P = v_N$ . Model:



Fig. 8.1-7

Other aspects of the model:

*ICMR* = input common mode voltage range (all transistors remain in saturation)

 $R_{in}$  = input differential resistance

 $R_{icm}$  = common mode input resistance

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Lecture 360 – Characterization of Comparators (4/4/02)

Page 360-8

# **Static Characteristics - Comparator Noise**

Noise of a comparator is modeled as if the comparator were biased in the transition region.



Noise leads to an uncertainty in the transition region which causes jitter or phase noise.

## **Dynamic Characteristics - Propagation Time Delay**

Rising propagation delay time:



Propagation delay time =  $\frac{\text{Rising propagation delay time} + \text{Falling propagation delay time}}{2}$ 

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Lecture 360 – Characterization of Comparators (4/4/02)

Page 360-10

# **Dynamic Characteristics - Single-Pole Response**

Model:

$$A_{\nu}(s) = \frac{A_{\nu}(0)}{\frac{s}{\omega_c} + 1} = \frac{A_{\nu}(0)}{s\tau_c + 1}$$

where

 $A_{v}(0) = dc$  voltage gain of the comparator

 $\omega_C = \frac{1}{\tau_C} = -3$ dB frequency of the comparator or the magnitude of the pole

Step Response:

$$v_O(t) = A_V(0) [1 - e^{-t/\tau_C}] V_{in}$$

where

 $V_{in}$  = the magnitude of the step input.

## **Dynamic Characteristics - Propagation Time Delay**

The rising propagation time delay for a single-pole comparator is:

$$\frac{V_{OH} - V_{OL}}{2} = A_{\nu}(0) \left[ 1 - e^{-t_p/\tau_c} \right] V_{in} \rightarrow t_p = \tau_c \ln \left[ \frac{1}{1 - \frac{V_{OH} - V_{OL}}{2A_{\nu}(0)V_{in}}} \right]$$

Define the minimum input voltage to the comparator as,

$$V_{in}(\min) = \frac{V_{OH} - V_{OL}}{A_{v}(0)} \rightarrow t_{p} = \tau_{c} \ln \left[ \frac{1}{1 - \frac{V_{in}(\min)}{2V_{in}}} \right]$$

Define k as the ratio of the input step voltage,  $V_{in}$ , to the minimum input voltage,  $V_{in}(min)$ ,

$$k = \frac{V_{in}}{V_{in}(\min)}$$
  $\rightarrow$   $t_p = \tau_c \ln\left[\frac{2k}{2k-1}\right]$ 

Thus, if k = 1,  $t_D = 0.693\tau_C$ .

Illustration:





ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Lecture 360 – Characterization of Comparators (4/4/02)

Page 360-12

# **Dynamic Characteristics - Slew Rate of a Comparator**

If the rate of rise or fall of a comparator becomes large, the dynamics may be limited by the slew rate.

Slew rate comes from the relationship,

$$i = C \frac{dv}{dt}$$

where i is the current through a capacitor and v is the voltage across it.

If the current becomes limited, then the voltage rate becomes limited.

Therefore for a comparator that is slew rate limited we have,

$$t_p = \Delta T = \frac{\Delta V}{SR} = \frac{V_{OH} - V_{OL}}{2 \cdot SR}$$

where

SR = slew rate of the comparator.

### **Example 1 - Propagation Delay Time of a Comparator**

Find the propagation delay time of an open loop comparator that has a dominant pole at 10<sup>3</sup> radians/sec, a dc gain of 10<sup>4</sup>, a slew rate of 1V/µs, and a binary output voltage swing of 1V. Assume the applied input voltage is 10mV.

#### Solution

The input resolution for this comparator is  $1V/10^4$  or 0.1mV. Therefore, the 10mV input is 100 times larger than  $v_{in}(\text{min})$  giving a k of 100. Therefore, we get

$$t_p = \frac{1}{10^3} ln \left( \frac{2 \cdot 100}{2 \cdot 100 - 1} \right) = 10^{-3} ln \left( \frac{200}{199} \right) = 5.01 \mu s$$

For slew rate considerations, we get

$$t_p = \frac{1}{2.1 \times 10^6} = 0.5 \mu s$$

Therefore, the propagation delay time for this case is the larger or 5.01µs.

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Lecture 360 – Characterization of Comparators (4/4/02)

Page 360-14

#### **SUMMARY**

- A comparator is a one-bit ADC
- Comparators can be noninverting or inverting
- Types of comparators include:
  - Open-loop
  - Regenerative
  - Open-loop and regenerative
- Static Characteristics
  - Gain
  - Output high and low states
  - Input resolution
  - Offset
  - Noise
- Dynamic Characteristics
  - Propagation delay
  - Slew rate