LECTURE 400 – DISCRETE-TIME COMPARATORS (LATCHES) (READING: AH – 475-483)

Objective

The objective of this presentation is:

- 1.) Illustrate discrete-time comparators
- 2.) Estimate the propagation delay time

Outline

- Switched capacitor comparators
- Regenerative comparators (latches)
- Summary

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Lecture 400 – Discrete-Time Comparators (4/8/02)

Page 400-2

Switched Capacitor Comparator

A switched capacitor comparator

Equivalent circuit when the ϕ_2 switches are closed

Fig. 8.5-1

 ϕ_1 Phase:

The V_1 input is sampled and the dc input offset voltage is autozeroed.

$$V_C(\phi_1) = V_1 - V_{OS}$$
 and $V_{Cp}(\phi_1) = V_{OS}$

 ϕ_2 Phase:

$$\begin{split} V_{out}(\phi_2) = -A \left[\frac{V_2 C}{C + C_p} - \frac{(V_1 - V_{OS})C}{C + C_p} + \frac{V_{OS} C_p}{C + C_p} \right] + AV_{OS} \\ = -A \left[(V_2 - V_1) \frac{C}{C + C_p} + V_{OS} \left(\frac{C}{C + C_p} + \frac{C_p}{C + C_p} \right) \right] + AV_{OS} = -A(V_2 - V_1) \frac{C}{C + C_p} \approx A(V_1 - V_2) \end{split}$$

if C_p is smaller than C.

Differential-In, Differential-Out Switched Capacitor Comparator

Comments:

- Reduces the influence of charge injection
- Eliminates even harmonics

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Lecture 400 – Discrete-Time Comparators (4/8/02)

Page 400-4

Regenerative Comparators

Regenerative comparators use positive feedback to accomplish the comparison of two signals. Latches have a faster switching speed that the previous bistable comparators.

NMOS and PMOS latch:

How is the input applied to a latch?

The inputs are initially applied to the outputs of the latch.

 V_{o1} ' = initial input applied to v_{o1}

 V_{o2} ' = initial input applied to v_{o2}

Step Response of a Latch

Circuit:

Nodal equations:

$$g_{m1}V_{o2} + G_1V_{o1} + sC_1\left(V_{o1} - \frac{V_{o1}'}{s}\right) = g_{m1}V_{o2} + G_1V_{o1} + sC_1V_{o1} - C_1V_{o1}' = 0$$

$$g_{m2}V_{o1} + G_2V_{o2} + sC_2\left(V_{o2} - \frac{V_{o2}'}{s}\right) = g_{m2}V_{o1} + G_2V_{o2} + sC_2V_{o2} - C_2V_{o2}' = 0$$

Solving for V_{01} and V_{02} gives.

$$V_{o1} = \frac{R_1C_1}{sR_1C_1 + 1} \; V_{o1}, \; -\frac{g_{m1}R_1}{sR_1C_1 + 1} \; V_{o2} = \frac{\tau_1}{s\tau_1 + 1} \; V_{o1}, \; -\frac{g_{m1}R_1}{s\tau_1 + 1} \; V_{o2}$$

$$V_{o2} = \frac{R_2 C_2}{s R_2 C_2 + 1} V_{o2}, -\frac{g_{m2} R_2}{s R_2 C_2 + 1} V_{o1} = \frac{\tau_2}{s \tau_2 + 1} V_{o2}, -\frac{g_{m2} R_2}{s \tau_2 + 1} V_{o1}$$

Defining the output, ΔV_o , and input, ΔV_i , as

$$\Delta V_o = V_{o2} - V_{o1}$$
 and $\Delta V_i = V_{o2}' - V_{o1}'$

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Lecture 400 – Discrete-Time Comparators (4/8/02)

Page 400-6

Step Response of the Latch - Continued

Solving for ΔV_{O} gives,

$$\Delta V_o = V_{o2} - V_{o1} = \frac{\tau}{s\tau + 1} \Delta V_i + \frac{g_m R}{s\tau + 1} \Delta V_o$$

or

$$\Delta V_o = \frac{\tau \Delta V_i}{s\tau + (1 - g_m R)} = \frac{\frac{\tau \Delta V_i}{1 - g_m R}}{\frac{s\tau}{1 - g_m R} + 1} = \frac{\tau' \Delta V_i}{s\tau' + 1}$$

where

$$\tau' = \frac{\tau}{1 - g_m R}$$

Taking the inverse Laplace transform gives

$$\Delta v_o(t) = \Delta V_i, \ e^{-t/\tau} = \Delta V_i \ e^{-t(1-g_mR)/\tau} \approx e^{g_mRt/\tau} \Delta V_i, \quad \text{if } g_mR >> 1.$$

Define the latch time constant as

$$\tau_L \approx \frac{\tau}{g_m R} = \frac{C}{g_m} = \frac{0.67WLC_{ox}}{\sqrt{2K'(W/L)I}} = 0.67C_{ox} \sqrt{\frac{WL^3}{2K'I}}$$

if $C \approx C_{gs}$.

$$\therefore \qquad \Delta V_{out}(t) = e^{t/\tau_L} \, \Delta V_i$$

Step Response of a Latch - Continued

Normalize the output voltage by $(V_{OH}-V_{OL})$ to get

$$\frac{\Delta V_{out}(t)}{V_{OH}-V_{OL}} = e^{t/\tau_L} \frac{\Delta V_i}{V_{OH}-V_{OL}}$$

which is plotted as,

The propagation delay time is $t_p = \tau_L \ln \left(\frac{V_{OH} - V_{OL}}{2\Delta V_i} \right)$

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Lecture 400 – Discrete-Time Comparators (4/8/02)

Page 400-8

Example 8.5-1 - Time domain characteristics of a latch.

Find the time it takes from the time the latch is enabled until the output voltage, ΔV_{out} , equals V_{OH} - V_{OL} if the W/L of the latch NMOS transistors is 10μ m/ 1μ m and the latch dc current is 10μ A when $\Delta V_i = 0.1(V_{OH}$ - $V_{OL})$ and $\Delta V_i = 0.01(V_{OH}$ - $V_{OL})$. Find the propagation time delay (ΔV_{out} =0.5(V_{OH} - V_{OL})) for the latch for each of these conditions.

Solution

The transconductance of the latch transistors is

$$g_m = \sqrt{2 \cdot 110 \cdot 10 \cdot 10} = 148 \mu S$$

The output conductance is $0.4\mu S$ which gives $g_m R$ of 59.2V/V. Since $g_m R$ is greater than 1, we can use the above results. Therefore the latch time constant is found as

$$\tau_L = 0.67 C_{ox} \sqrt{\frac{WL^3}{2K'I}} = 0.67(24 \times 10^{-4}) \sqrt{\frac{(10 \cdot 1) \times 10^{-18}}{2 \cdot 110 \times 10^{-6} \cdot 10 \times 10^{-6}}} = 108 \text{ns}$$

If we assume that the propagation time delay is the time for the output to reach $(V_{OH}-V_{OL})$, then for $\Delta V_i = 0.01(V_{OH}-V_{OL})$ that $t_p = 4.602\tau_L = 497$ ns and for $\Delta V_i = 0.1(V_{OH}-V_{OL})$ that $t_p = 2.306\tau_L = 249$ ns.

If we assume that the propagation time delay is the time when the output is $0.5(V_{OH}-V_{OL})$, then using the above results or Fig. 8.5-5 we find for $\Delta V_i = 0.01(V_{OH}-V_{OL})$ that $t_p = 3.91\tau_L = 422$ ns and for $\Delta V_i = 0.1(V_{OH}-V_{OL})$ that $t_p = 1.61\tau_L = 174$ ns.

Comparator using a Latch with a Built-In Threshold[†]

How does it operate?

- 1.) Devices in shaded region operate in the triode region.
- 2.) When the latch/reset goes high, the upper cross-coupled inverter-latch regenerates. The drain currents of M5 and M6 are steered to obtain a final state determined by the mismatch between the R_1 and R_2 resistances.

$$\frac{1}{R_1} = K_N \left[\frac{W_1}{L} \left(v_{in}^+ - V_T \right) + \frac{W_2}{L} \left(V_{REF}^- - V_T \right) \right]$$
and

$$\frac{1}{R_2} = K_N \left[\frac{W_1}{L} (v_{in} - V_T) + \frac{W_2}{L} (V_{REF} + V_T) \right]$$

3.) The input voltage which causes R_1 and R_2 to be equal is given by $v_{in}(\text{threshold}) = (W_2/W_1)V_{REF}$

 $W_2/W_1 = 1/4$ generates a threshold of $\pm 0.25 V_{REF}$.

Performance \rightarrow 20Ms/s & 200 μ W

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Lecture 400 – Discrete-Time Comparators (4/8/02)

Page 400-10

Simple, Low Power Latched Comparator

Dissipated 50µW when clocked at 2MHz.

[†] T.B. Cho and P.R. Gray, "A 10b, 20Msamples/s, 35mW pipeline A/D Converter," *IEEE J. Solid-State Circuits*, vol. 30, no. 3, pp. 166-172, March 1995.

[†] A. Coban, "1.5V, 1mW, 98-dB Delta-Sigma ADC", Ph.D. dissertation, School of ECE, Georgia Tech, Atlanta, GA 30332-0250.

Dynamic Latch

Circuit:

Input offset voltage distribution:

Power dissipation/sampling rate = 4.3μ W/Ms/s

ECE 6412 - Analog Integrated Circuit Design - II

© P.E. Allen - 2002

Lecture 400 – Discrete-Time Comparators (4/8/02)

Page 400-12

SUMMARY

- Discrete-time comparators must work with clocks
- Switched capacitor comparators use op amps to transfer charge and autozero
- Regenerative comparators (latches) use positive feedback
- The propagation delay of the regenerative comparator is slow at the beginning and speeds up rapidly as time increases
- The highest speed comparators will use a combination of open-loop comparators and latches