LECTURE 410 – HIGH-SPEED COMPARATORS
(READING: AH – 483-488)

Objective
The objective of this presentation is:
1.) Show how to achieve high-speed comparators

Outline
• Concepts of high-speed comparators
• Amplifier-latch comparators
• Summary

Conceptual Illustration of a Cascaded Comparator
How does a cascaded, high-speed comparator work?

Assuming a small overdrive,
1.) The initial stage build the driving capability.
2.) The latter stages swing rail-to-rail and build the ability to quickly charge and discharge capacitance.
Minimizing the Propagation Delay Time in Comparators

Fact:
- The input signal is equal to $V_{in}(\text{min})$ for worst case
- Amplifiers have a step response with a negative argument in the exponential
- Latches have a step response with a positive argument in the exponential

Result:
Use a cascade of linear amplifier to quickly build up the signal level and apply this amplified signal level to a latch for quick transition to the full binary output swing.

Illustration of a preamplifier and latch cascade:

Minimization of t_p:
Q. If the preamplifier consists of n stages of gain A having a single-pole response, what is the value of n and A that gives minimum propagation delay time?
A. $n = 6$ and $A = 2.62$ but this is a very broad minimum and n is usually 3 and $A \approx 6-7$ to save area.

Fully Differential, Three-Stage Amplifier and Latch Comparator

Circuit:

Comments:
- Autozero and reset phase followed by comparison phase
- More switches are needed to accomplish the reset and autozero of all preamplifiers simultaneously
- Can run as high as 100Msps

Preamplifier and Latch Circuits

Gain:

\[
A_v = - \frac{g_{m1}}{g_{m3}} = - \frac{g_{m2}}{g_{m4}} = - \sqrt{\frac{K_N'(W_1/L_1)}{K_p'(W_3/L_3)}}
\]

Dominant Pole:

\[
|p_{dominant}| = \frac{g_{m3}}{C} = \frac{g_{m4}}{C}
\]

where \(C\) is the capacitance seen from the output nodes to ground.

If \((W_1/L_1)/(W_3/L_3) = 100\) and the bias current is 100\(\mu\)A, then \(A = -3.85\) and the bandwidth is 15.9MHz if \(C = 0.5\)pF.

Comments:

- If a buffer is used to reduce the output capacitance, one must take into account the loss of the buffer.
- The use of a preamplifier before the latch reduces the latch offset by the gain of the preamplifier so that the offset is due to the preamplifier only.

An Improved Preamplifier

Circuit:

Gain:

\[
A_v = - \frac{g_{m1}}{g_{m3}} = - \sqrt{\frac{K_N'(W_1/L_1)I_1}{K_p'(W_3/L_3)I_3}} = - \sqrt{\frac{K_N'(W_1/L_1)}{K_p'(W_3/L_3)}} \sqrt{\frac{I_5}{1+I_3}}
\]

If \(I_5 = 24I_3\), the gain is increased by a factor of 5.
Charge Transfer Preamplifier

The preamplifier can be replaced by the charge transfer circuit shown.

\[V_{in} = V_{REF} \]

Charge transfer amplifier.

\[V_{in} = V_{REF} \]

Precharge phase.

\[V_{in} = V_{REF} + \Delta V \]

Amplification phase.

Comments:
- Only positive values of voltage will be amplified.
- Large offset voltages result as a function of the subthreshold current.

A CMOS Charge Transfer Preamplifier

Circuit:

![CMOS Charge Transfer Preamplifier Circuit](image)

Comments:
- NMOS and PMOS allow both polarities of input
- CMOS switches along with dummy switches reduce the charge injection
- Switch S3 prevents the subthreshold current influence
- Used as a preamplifier in a comparator with 8-bit resolution at 20Msps and a power dissipation of less than 5µW
A High-Speed Comparator

Circuit:

![Comparator Circuit Diagram](image)

Comments:
- Designed to have a $t_p = 10$ns with a 5pF load and a 10mV overdrive
- Not synchronous
- Comparator gain is greater than 2000V/V and the quiescent current was 100µA

SUMMARY

Types of Comparators Presented
- High-gain, open-loop
- Improved high-gain, open-loop, comparators
 - Hysteresis
 - Autozeroing
- Regenerative comparators
- Discrete-time comparators

Performance Characterization
- Propagation delay time
- Binary output swing
- Input resolution and/or gain
- Input offset voltage
- Power dissipation

Important Principles
- The speed of the comparator depends on the linear and slewing responses
- The dc input offset voltage depends on the matching and is reduced by autozeroing.
 - Charge injection is the limit of autozeroing
- The comparator gain should be large enough for a binary output when $v_{in} = V_{in}(\text{min})$
- Cascaded comparators, the first stages should large GB and the last stages high SR