Homework Assignment No. 1

This homework assignment is due in class on Wednesday, January 19, 2005.

The following transistor parameters should used unless otherwise stated.

MOSFETS

MOSFET Parameter	n-channel	p-channel	units	
K'	24	8	μΑ/V ²	
V _{T0}	0.75	-0.75	V	
γ	0.8	0.4	V ^{0.5}	
ф	0.6	0.6	V	
λ	0.01	0.02	V-1	

 $C_{ox} = 0.7 \text{fF}/\mu\text{m}^2$ $LD(NMOS) = 0.45 \mu\text{m}$

 $LD(PMOS) = 0.6\mu m$

n⁺ diffusion to p-well (junction, bottom) = 0.33 fF/ μ m²

 n^+ diffusion sidewall (junction, sidewall) = 0.9fF/µm

 p^+ diffusion to substrate (junction, bottom) = 0.38fF/ μ m²

 p^+ diffusion sidewall (junction, sidewall) = 1.0 fF/µm

n-channel to bulk (junction, bottom) = $0.1 \text{fF}/\mu\text{m}^2$

n-channel to bulk (junction, sidewall) = 0.3 fF/µm

p-channel to bulk (junction, bottom) = $0.1 \text{fF}/\mu\text{m}^2$ p-channel to bulk (junction, sidewall) = $0.3 \text{fF}/\mu\text{m}$

BJTS

BJT Parameter	NPN	PNP (lateral)	units	
ß	100	50	A/A	
Vt	26	26	mV	
IS	10	10	fA	
φB	0.8	0.8	V	
V _{AF}	100	50	V	

	C _{jE0}	C _{jC0}	C _{jS0}	n	фв	t _F
Vertical NPN	100fF	1000fF	2000fF	0.5	0.8V	0.5ns
Lateral PNP	80fF	500fF	2000fF	0.5	0.8V	5ns

Problem 1 - (10 points)

A top view of a MOS transistor is shown. (a) Identify the type of transistor (NMOS or PMOS) and its value of W and L.

(b.) Draw the cross-section A-A' approximately to scale.

(c) Assume that dc voltage of terminal 1 is 5V, terminal 2 is 3V and terminal 3 is 0V. Find the numerical value of the capacitance between terminals 1 and 2, 2 and 3, and 1 and 3. Assume that the voltage dependence for pn junction capacitances is -0.5 (this is called MJ in SPICE).

Problem 2 - (10 points)

Find the numerical values of I_1 , I_2 , V_D , V_E , and V_C to within $\pm 5\%$ accuracy.

Problem 3 - (10 points)

Find the numerical values of all roots and the midband gain of the transfer function v_{out}/v_{in} of the differential amplifier shown. Assume that $K_N' = 110\mu A/V^2$, $V_{TN} = 0.7V$, and $\lambda_N = 0.04V^{-1}$. The values of $C_{gs} = 0.2$ pF and $C_{gd} = 20$ fF.

Problem 4 - (10 points)

Find the voltage transfer function of the common-gate amplifier shown. Identify the numerical values of the small-signal voltage gain, v_{out}/v_{in} , and the poles and zeros. Assume that $I_D =$ $500\mu A$, $K_N' = 100\mu A/V^2$, $V_{TN} = 0.5V$, and $K_P' = 50\mu A/V^2$, $V_{TP} = -0.5V$, $\lambda \approx 0V^{-1}$, $C_{gs} = 0.5$ pF and $C_{gd} = 0.1$ pF.

Problem 5 - (10 points)

Draw the electrical schematic using the proper symbols for the transistors. Identify on your schematic the terminals that are +5V, ground, input, and output. Label the transistors on the layout as M1, M2, etc. and determine their W/L values. Assume each square in the layout is 1 micron by 1 micron. Find the area in square microns and periphery in microns for the source and drain of each transistor.

