

Homework Assignment No. 8 - Solutions

Problem 1 - (10 points)

shown in Fig. P6.5-15. All device lengths are 1µm, the slew rate is $\pm 10V/\mu s$, the GB is 10MHz, the maximum output voltage is +2V, the minimum output voltage is -2V, and the input common mode range is from -1V to +2V. Design all W values of all transistors in this op amp. Your

exceed the specifications. When calculating the maximum or minimum output voltages, divide the voltage drop across series transistors equally. Ignore bulk effects in this problem. When you have completed your design, find the value of the small signal differential voltage gain, $A_{vd} = v_{out}/v_{id}$, where $v_{id} = v_1 - v_2$ and the small signal output resistance, Rout.

Solution

1.) The slew rate will specify *I*. \therefore $I = C \cdot SR = 10^{-11} \cdot 10^7 = 10^{-4} = 100 \mu A$.

2.) Use *GB* to define W_1 and W_2 .

$$GB = \frac{g_{m1}}{C} \rightarrow g_{m1} = GB \cdot C = 2\pi \times 10^7 \cdot 10^{-11} = 628\mu S$$

$$\therefore W_1 = \frac{g_{m1}^2}{2K_N(0.5I)} = \frac{(628)^2}{2 \cdot 110 \cdot 50} = 35.85 \Rightarrow \underline{W}_1 = \underline{W}_2 = 36\mu m$$

3.) Design W_{15} to give $V_T + 2V_{ON}$ bias for M6 and M7. $V_{ON} = 0.5$ V will meet the desired maximum output voltage specification. Therefore,

$$V_{SG15} = V_{ON15} + |V_T| = 2(0.5V) + |V_T| \qquad \rightarrow V_{ON15} = 1V = \sqrt{\frac{2I}{K_P W_{15}}}$$

$$\therefore W_{15} = \frac{2I}{K_P V_{ON15}^2} = \frac{2 \cdot 100}{50 \cdot 1^2} = 4\mu m \qquad \Rightarrow \qquad \underline{W}_{\underline{15}} = 4\mu m$$

4.) Design W_3 , W_4 , W_6 and W_7 to have a saturation voltage of 0.5V with 1.5I current.

$$W_3 = W_4 = W_6 = W_7 = \frac{2(1.5I)}{K_P V_{ON}^2} = \frac{2 \cdot 150}{50 \cdot 0.5^2} = 24 \mu \text{m} \implies \underline{W_3} = \underline{W_4} = \underline{W_6} = \underline{W_7} = 24 \mu \text{m}$$

Problem 6.5-15 - Continued

5.) Next design W_8 , W_9 , W_{10} and W_{11} to meet the minimum output voltage specification. Note that we have not taken advantage of smallest minimum output voltage because a normal cascode current mirror is used which has a minimum voltage across it of V_T + $2V_{ON}$. Therefore, setting $V_T + 2V_{ON} = 1$ V gives $V_{ON} = 0.15$ V. Using worst case current, we choose 1.5*I*. Therefore,

$$W_8 = W_9 = W_{10} = W_{11} = \frac{2(1.5I)}{K_N V_{ON}^2} = \frac{2 \cdot 150}{110 \cdot 0.15^2} = 121 \mu \text{m} \implies \underline{W}_8 = \underline{W}_9 = \underline{W}_{10} = \underline{W}_{11} = \underline{W}_{11} = 121 \mu \text{m}$$

<u>121µm</u>

...

6.) Check the maximum ICM voltage.

 $V_{ic}(\max) = V_{DD} + V_{SD3}(\operatorname{sat}) + V_{TN} = 3V - 0.5 + 0.7 = 3.2V$ which exceeds spec.

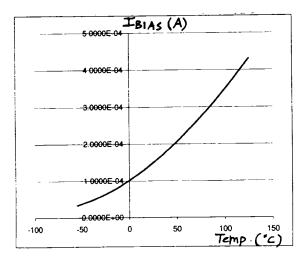
7.) Use the minimum ICM voltage to design W_5 .

$$V_{ic}(\min) = V_{SS} + V_{DS5}(\operatorname{sat}) + V_{GS1} = -3 + V_{DS5}(\operatorname{sat}) + \left(\sqrt{\frac{2 \cdot 50}{110 \cdot 36}} + 0.7\right) = -1V$$

$$\therefore \quad V_{DS5}(\operatorname{sat}) = 1.141 \implies W_5 = \frac{2I}{K_N V_{DS5}(\operatorname{sat})^2} = 1.39 \mu \mathrm{m} = 1.4 \mu \mathrm{m}$$

Also, let $W_{12} = W_{13} = W_5 \implies \underline{W_{12}} = \underline{W_{13}} = \underline{W_5} = \underline{1.4 \mu \mathrm{m}}$

8.) W_{14} is designed as


$$W_{14} = W_3 \frac{I_{14}}{I_3} = 24 \mu \text{m} \frac{I}{1.5I} = 16 \mu \text{m} \qquad \Rightarrow \qquad \underline{W_{\underline{14}} = 16 \mu \text{m}}$$

Now, calculate the op amp small-signal performance.

$$\begin{split} R_{out} &\approx r_{ds11}g_{m9}r_{ds9}||g_{m7}r_{ds7}(r_{ds2}||r_{ds4}) \\ g_{m9} &= \sqrt{2K_N \cdot I \cdot W_9} = 1632\mu\text{S}, \ r_{ds9} = r_{ds11} = \frac{25\text{V}}{100\mu\text{A}} = 0.25\text{M}\Omega, \\ g_{m7} &= \sqrt{2K_P \cdot I \cdot W_7} = 490\mu\text{S}, \ r_{ds7} = \frac{20\text{V}}{100\mu\text{A}} = 0.2\text{M}\Omega, \ r_{d2} = \frac{25\text{V}}{50\mu\text{A}} = 0.5\text{M}\Omega \\ r_{ds4} &= \frac{20\text{V}}{150\mu\text{A}} = 0.1333\text{M}\Omega \quad \therefore \quad \underline{R}_{out} \approx 102\text{M}\Omega ||10.31\text{M}\Omega = 9.3682\text{M}\Omega \\ A_{vd} &= \left(\frac{2+\text{k}}{2+2\text{k}}\right)g_{m1}R_{out}, \ \text{k} = \frac{102\text{M}\Omega}{(r_{ds2}||r_{ds4})g_{m7}r_{ds7}} = 9.888, \ g_{m1} = \sqrt{K_N \cdot I \cdot W_1} = 629\mu\text{S} \\ A_{vd} &= (0.5459)(629\mu\text{S})(9.3682\text{M}\Omega) = 3,217\text{V/V} \quad \Rightarrow \quad \underline{A}_{vd} = 3,217\text{V/V} \end{split}$$

6-37

**** 01	PERATING POI				TEMP= 85.000
NODE	=VOLTAGE NODE		=VOLTAGE		
+0:3		01 0:4	=-2.498E-02		
+0:6	=-6.127 B -		= 1.000E+01	0:200	=-1.000E+01
**** BIP	OLAR JUNCTIC	e TRANSIST)RS		
SUBCRT					
RIEDENT			0:04		
HODEL		••••••	0:PMP		
IB			-5.9338-06		
IC			-2.9668-04		
VBE			-5.347E-01		
ACE			-9.9382+00		
BETAD	2.5008+02	2.5008+02	5.000E+01		
			TON 19204-	27.000	TEMP= 105.000
NODE			=VOL/TAGE	HODE	=VOLTAGE
+0:3	= 4.113E-		=-6.037E-02		=-5.960E-01
+0:5					=-1.000E+01
	OLAR JUNCTI				
SUBCICT	Oller Concile				
RIJOGAT	0:02	0:03	0:04		
NODEL		-	0:PMP		
IB			-7.158E-06		
IC			-3.579E-04		
VBE			-5.034E-01		
VCE			-9.9072+00		
BETAD	2.500E+02	2.500E+02	5.000E+01		
**** 0) TEMP= 125.000
NODE			=VOLTAGE		
+0:3	= 3.482E		=-9.6048-02		=-5.960E-01 =-1.000E+01
+0:6			= 1.000E+01	0:200	-1.000F+01
	OLAR JUNCTI	ON TRANSIST	ORS		
SUBCKT			A. A.		
RLIDOOT	-	0:03	0:Q4 0:PHP		
NODEL		0:NPN	-8.480E-06		
IB			-4.2408-04		
IC VBE			-4.7185-01		
			-9.875E+00		
VCE			5.000E+01		
DEIND	1.3002+02	2.5002.02			
			-		
TEMP (D	BGC) IC3	= IBIAS (A)	TEOP	IC3 = IB	IAS (λ)
-55	3.	253E-05	45	1.935 E	-04
-35	-	2158-05	65	2.446B	-04
-15		790E-05	85	3.014E	-04
5	1.	100E-04	105	3.636E	-04
25	1.	486E-04	125	4.308E	-04

6-28

If the bias current level of 741 input stage is doubled, then from (6.134), $G_{m_1} = \frac{1}{2.7 \, \text{KJ}}$

From (6.138),

$$R_{01} = R_{00T} |_{Q_{4}} || R_{00T} |_{Q_{6}}$$

= 2 $r_{04} || r_{06} (1 + g_{m_{6}} (1Kn))$
Using $\eta_{nen} = 2 \times 10^{-4}, \eta_{enc} = 5 \times 10^{-4}$

and
$$|I_c| = 194A$$
, we have
 $r_{04} = \frac{1}{129m} = \frac{104}{5} \frac{26}{19 \times 10^{-3}} = 2.74 \text{ Ms}$
 $r_{06} = \frac{10^4}{2} \frac{26}{19 \times 10^{-3}} = 6.84 \text{ Ms}$

741 equivalent
1.35 M
$$\Omega$$
 3.75 M Ω 5.7 M Ω 83 K Ω 9.1 M Ω
+
 v_{id} +
 v_{id} +
 v_{id} +
 v_{id} +
 v_{id} +
 v_{i2} +
 v_{i3} +
 v_{i2} +
 v_{i3} +
 v_{i4} +

3.75 | 5.7 2.26 Mr.; 83K 9.1M=82Ka

$$A_{v} = \frac{2260}{2.7} \cdot \frac{82}{0.147} = 838 \times 558$$
$$= 468,000$$

6.29 If the 1001 emitter resistor of Q17 is removed, then in (6.142) We have, $R_{eq_1} = 4_{\pi_{17}} \pm \frac{\beta}{q_m} = 250 \times \frac{26}{26} = 11.8 \text{ K} \text{L}$ $R_{i_2} = \delta_{\pi_{12}} + (1 + \beta_0) (\delta_{\pi_{17}} \parallel 50 \text{ kg})$ = 406 KA + 251 × 9.55 KA = 2.8 MJ From (6:146) $Gm_2 \simeq gm_{17} = \frac{0.55}{26} = \frac{1}{47.3\Omega}$ From (6.147) Roz = 5013 | 5017 $v_{0|3|3} = \frac{1}{1.9} = \frac{10^4}{5} \frac{26}{0.55} = 94.5 \text{ KJ}$ $\delta_{017} = \frac{1}{\eta g_m} = \frac{10^4}{2} \frac{26}{0.55} = 236 \text{ kg}$. Roz = 67.5 Kr 67.5K1 9.1M1 2.7 M I 6.8 M.L 2.8 M.L Vid E Vid 47.3 5.4 KJ

 $A_{v} = \frac{1980}{5\cdot4} \times \frac{67}{0\cdot047} = 523,000$ $6.8 \parallel 2\cdot8 = 1.98 \text{ M}_{\Sigma}$ $67.5 \text{ K}\parallel 9.1 \text{ M} = 67 \text{ K}$

6.30

Minimum CM input voltage:

The circuit ceases to function correctly when Q_3 and Q_4 saturate.

 Q_3 and Q_4 operate in the F.A.R. when ,

$$V_{EC_3} > V_{CE}(sat)$$

$$V_{E_3} = V_{1C} - V_{BE_1}$$

$$V_{C_3} = -V_{EE} + V_{BE_5} + V_{BE_7} + I_{C_5}(1K)$$

$$V_{EC_3} = V_{1C} - V_{BE_1} - (-V_{EE}) - V_{BE_5} - V_{BE_7} > V_{CE}(sat)$$

$$V_{1C} > -V_{EE} + V_{BE_1} + V_{BE_5} + V_{BE_7} + V_{CE}(sat)$$

$$Maximum \ CM \ input \ voltage:$$

$$Q_1 \ and \ Q_2 \ operate \ in \ the FAR \ when$$

$$V_{CE_1} > V_{CE}(sat)$$

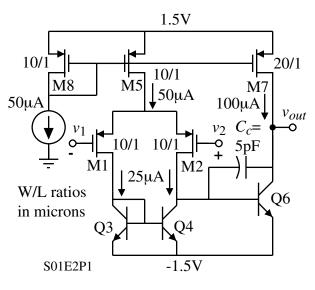
$$V_{C1} = V_{CC} - |V_{BE_8}|$$

$$V_{E_1} = V_{1C} - V_{BE_1}$$

$$V_{CE_1} = V_{CC} - |V_{BE_8}| - V_{1C} + V_{BE_1} > V_{CE}(sat)$$
Assume $V_{BE_1} = |V_{BE_8}|$
Then $V_{1C} < V_{CC} - V_{CE}(sat)$

741 AS A VOLTAGE FOLLOMER							
* PONE	R SUPPL						
VCC	100	0 15					
VEE	200	0 -15					
* TRPD	T STAGE						
Q1	7	. 8	10	RPH			
Q2	7	9	11	NPN			
Q3	12	6	10	PRP			
Q4	16	6	11	PNP			
Q5	12	13	14	nps			
Q6	16	13	15	NPN			
07	100	12	13	HPN			
Q8	7	7	100	PNP			
Q9	6	7	100	PNP			
Q10	6	4	5	NPN			
Q11	4	4	200	NPN			
012	3	3	100	PNP			
R1	14	200	18				
R2	15	200	18				
R3	13	200	50K				
R5	3	4	39 K				
R4	5	200	5K				
+ DARI	INGTON	GAIN STA	GE				
Q13B	19	3	100	PNPB			
016	100	16	17	npn			
Q17	19	17	18	HPH			
RS	18	200	100				
R9	17	200	50K				
		_					
	OT STA		100	1007D 1			
Q13A	20	3	100	PNPA NPN 3			
014	100	20	25 22	MPN 3			
Q18	20	21	21	HPN HPN			
Q19	20	20 22	23	PMP 3			
Q20	200	19	22	PMP			
Q23	200	9	27				
R6	25 23	9	22				
R7 R10	21	22	40K				
KTA.	••						
VI1	8	0	0				
.HODE	l npn		250 IS		VAF=130		
	l PHP		-	≈2E-15	VAF=50		
	L PRPA			=0.5E-15			
	l PHPB			=1.5 B -19	5 VAF=50		
		PAGE NONO	D				
	H OUT-	80					
.0P							
.DC V	11 -15	15 0.5					
	-	****	- 0 2 1	AND VR	E(OH) = 0.7 V,		
AS			- 0.2		COMMON-MODE RANGE OF		
• THE HAND CALCULATIONS PREDICT & COMMON-MODE RANGE OF • -12.7 V < VIC < 14.8 V							
* IN THE VOLTAGE-FOLLOWER CONFIGURATION, VO = VI = VIC							
* AS LONG AS THE AMPLIFIER IS WORKING CORRECTLY.							
* THE RESULTS OF THIS SIMULATION SHOW THAT							
* VO = VI FOR THE FOLLOWING RANGE:							
* -13 V < VI < 14.5 V							
* THEREFORE, THIS SIMULATION SHOWS THAT THE							
* CONNON MODE IMPUT RANGE IS:							
* -13	3 V < (VO = VI =	VIC)	< 14.5 V			
* WE	ICH IS	CLOSE TO	THE RE	Sult			
		BY HAND					

.


•	PREDICTED	ы	HADD	CARCOMATIO

.PLOT DC V(9) . END

******	DCT	ANSFER	CURV	78 8	THO	i = 27	.000	TELE=	27.	000
VOLT	V (9									•
(λ)	-2.00	08+01			0.	:	1.000E+0	1 2.	.000E+01	
-1.500E+01	1 318.0	•		•	•	· ·	• ••			
-1.4508+01			• X					٠	٠	
-1.400E+01		-	+ X		•	• •	+	+	+	
-1.350 E+0 1	-1.31E+0	1 •	+λ	• •	4	• •	+			
-1.3005+01		-	+ X			• •			+	
-1.250E+01 -1.200E+01		-	+ λ + λ			• •	•	+		
-1.150E+01		-	γ Α					+	+	
-1.100E+01		-	+ 1			• •	•	+	•	
-1.050E+01				A+ +					+	
-1.000E+01							••			-
-9.500E+00 -9.000E+00				+X +						
-9.500E+00			•				•	•	+	
-8.000E+00				+ 1 +	•	+ •	•	•	+	
-7.5008+00	-7.508+	00 +	+	+ X •			• •			
-7.000E+00			+	+ 2 +			, , , ,			
-6.500E+00			• •	+ X +						
-5.500 8 +00			•	• <u>}</u>		•				
-5.000B+00	-5.00E+	00-+	-+	-+)	\	+	++	+	••••••	-
-4.5008+00				+ ·	+λ		• •			
-6.000E+00								• •		
-3.500E+00 -3.000E+00			•		+λ +λ		• •			
-3.000E+00 -2.500E+00			•		• λ					
-2.0008+00			•		+ X		•	•	• •	•
-1.500 E+0 0			+	+	+ À			•	• •	• -
-1.0005+00			•		+ 1				• •	
-5.0008-01		01 + 04-+	•		+ 1					
0. 5.000E-01			+			+ λ		•		•
1.0008+00			•			+2	•	•	•	•
1.500E+00	1.50E	00 +	+	+	•	+ X	•	•	•	•
2.000E+00			+	٠	•	+ A			•	•
2.5008+00			+	•	•	+ } + }			+ +	•
3.000E+00 3.500E+00			•		•	• Å			•	•
4.0008+00			•	+	÷	+)		+	+	•
4.5008+00	4.50E	+00 +	٠	+	٠	•)			•	+
		+00-+								+- +
5.500E+00			•					•	•	• •
6.000E+00			• •	•	•	•	+ λ	•	•	•
7.0008+00			٠	+	•	+	+ X	+	•	+
7.5008+0	0 7.5 08	+00 +	٠	•	•	+	+ X		•	+
8.000E+0			٠	•	+	+	+ X		•	•
8.500E+0			+		+ +	•	+ X + 7	• •	•	•
9 500R+0	0 9.508	+00 +	•	•	•	•	• 1	4+	٠	•
1.000E+0	1 1.00E	+01-+	+		-*				•	
1.050 E +0			+	+	+	•		+Å	•	•
1.100E+0			•		• •	•		+λ + λ	•	• •
1.150E+0 1.200E+0			•		•			• λ		•
1.2508+0			+		•	+	٠	+ λ	٠	*
1.3008+0	1 1.30	8+01 +	٠		٠	+	٠	+ X		•
1.350E+0			٠		•	•		+ X		+
1.400E+0 1.450E+0			•		+	• •			λ+ λ+	•
1.4508+0	1 1.45	8+01 + 8+01-+								-+-
2.9002.0		+		٠		٠		٠		+
							-			
				INFORM	INTIO 1	n =Volt)	TRUM=	- 27. NC	DE 000 T	EMP= 27.000 =VOLTAGE
NOD +0:3		=VOLTAG = 1.431				=-1.43				=-1.490E+01
+0:5	:	=-1.107	E+00	0:7		= 1.44	1E+01	0:8		= 0.
+0:9		= 2.744	B-04	0:10		=-5.43				=-5.437E-01
+0:12		=-1.389				=-1.44				=-1.499E+01
+0:15		=-1.499				=-1.3 =-1.20				=-1.426E+01 = 5.904E-01
+0:18 +0:21		=-1.493 = 2.345				=-6.0				=-2.361E-03
+0:21		= 3.509								=-1.500E+01

Problem 5 – (10 points)

A two-stage, BiCMOS op amp is shown. For the PMOS transistors, the model parameters are K_P '=50 μ A/V², V_{TP} = -0.7V and λ_P = 0.05V⁻¹. For the NPN BJTs, the model parameters are β_F = 100, V_{CE} (sat) = 0.2V, V_A = 25V, V_t = 26mV, I_s = 10fA and n=1. (a.) Identify which input is positive and which input is negative. (b.) Find the numerical values of differential voltage gain magnitude, $|A_v(0)|$, *GB* (in Hertz), the slew rate, *SR*, and the location of the RHP zero. (c.) Find the numerical value of the maximum and minimum input common mode voltages.

<u>Solution</u>

(a.) The plus and minus signs on the schematic show which input is positive and negative.

(b.) The differential voltage gain, $A_{\nu}(0)$, is given as

$$A_{v}(0) = \frac{g_{m1}}{g_{ds2}+g_{o4}+g_{\pi 6}} \cdot \frac{g_{m6}}{g_{ds7}+g_{o6}} \qquad g_{m1} = g_{m2} = \sqrt{2 \cdot 50 \cdot 25 \cdot 10} = 158.1 \mu S$$

$$r_{ds2} = \frac{1}{\lambda_{P}I_{D}} = \frac{20}{25\mu A} = 0.8 M\Omega, r_{o4} = \frac{V_{A}}{I_{C}} = \frac{25V}{25\mu A} = 1 M\Omega, g_{m6} = \frac{I_{C}}{V_{t}} = \frac{100\mu A}{26m V} = 3846\mu S$$

$$r_{\pi 6} = \frac{\beta_{F}}{g_{m6}} = 26k\Omega, \quad r_{ds7} = \frac{1}{\lambda_{P}I_{D}} = \frac{20}{100\mu A} = 0.2 M\Omega \text{ and } r_{o6} = \frac{V_{A}}{I_{C}} = \frac{25V}{100\mu A} = 0.25 M\Omega$$

$$\therefore \quad |A_{v}(0)| = [158.1(0.8||1|||0.026)][3846(0.2||0.25)] = 3.888 \cdot 427.36 = \frac{1,659.6 V/V}{100\mu A} = 0.25 M\Omega$$

$$\beta B = \frac{g_{m1}}{C_{c}} = \frac{158.1\mu S}{5pF} = 31.62 \times 10^{6} \text{ rads/sec} \rightarrow \underline{GB} = 5.0325 \text{ MHz}$$

$$SR = \frac{50\mu A}{5pF} = \underline{10V/\mu s}$$

$$RHP \text{ zero} = \frac{g_{m6}}{C_{c}} = \frac{3.846mS}{5pF} = \underline{769.24 \times 10^{6} \text{ rads/sec}} \cdot (122 \text{ MHz})$$
(c.) The maximum input common mode voltage is given as
$$v_{icm} + = V_{CC} \cdot V_{DSS}(\text{sat}) - V_{SG1} = 1.5 - \sqrt{\frac{2\cdot50}{50\cdot10}} - 0.7 - \sqrt{\frac{2\cdot25}{50\cdot10}} = 0.8 - 0.447 \cdot 0.316 = \frac{1}{1000} + \frac{1000}{1000} + \frac{1000}{1000}$$

$$v_{icm} = -1.5 + V_{BE3} - V_{T1} = -1.5 + V_t \ln\left(\frac{25\mu A}{10fA}\right) - 0.7 = -2.2 + 0.5626 = -1.6374V$$