LECTURE 030 – ECE 4430 REVIEW III (READING: GHLM - Chaps. 3 and 4) #### **Objective** The objective of this presentation is: - 1.) Identify the prerequisite material as taught in ECE 4430 - 2.) Insure that the students of ECE 6412 are adequately prepared #### **Outline** - Models for Integrated-Circuit Active Devices - Bipolar, MOS, and BiCMOS IC Technology - Single-Transistor and Multiple-Transistor Amplifiers - Transistor Current Sources and Active Loads ECE 6412 - Analog Integrated Circuits and Systems II © P.E. Allen - 2002 Lecture 030 - ECE4430 Review III (12/29/01) Page 030-2 #### SINGLE-TRANSISTOR AND MULTIPLE-TRANSISTOR AMPLIFIERS ## **Characterization of Amplifiers** Amplifiers will be characterized by the following properties: - Large-signal voltage transfer characteristics (.DC) - Large-signal voltage swing limitations (.DC and .TRAN) - Small-signal, frequency independent performance (.TF) - Gain (.TF) - Input resistance (.TF) - Output resistance (.TF) - Small-signal, frequency response (.AC) - Other properties (.TEMP, .FOUR, etc.) - Noise (.NOISE) - Power dissipation (.OP) - Slew rate (.TRAN) - Etc. #### **Types of Single Transistor Amplifiers** ECE 6412 - Analog Integrated Circuits and Systems II © P.E. Allen - 2002 Lecture 030 - ECE4430 Review III (12/29/01) Page 030-4 ## **Signal Flow in Transistors** It is important to recognize that ac signals can only flow into and out of certain transistor terminals. Illustration: Rules: The collector or drain can never be an input terminal. The base or gate can never be an output terminal. In addition it is important to note polarity reversals on these signal paths. The base-collector or gate-drain path inverts. All other paths are noninverting. (This of course assumes that there are no reactive elements causing phase shifts) #### **Common Emitter Amplifer** #### Large-Signal: Small-Signal: $$g_m = \frac{I_C}{V_t}$$ and $r_o = \frac{V_A}{I_C}$ and $$r_O = \frac{V_A}{I_C}$$ $$R_{in} = r_{\pi} = \frac{\beta_O}{g_m}$$, $R_{out} = \frac{r_O R_C}{r_O + R_C}$, $\frac{v_{out}}{v_{in}} = \frac{-g_m \cdot r_O \cdot R_C}{r_O + R_C}$ and $\frac{i_{out}}{i_{in}} = \frac{\beta_O \cdot r_O}{r_O + R_C}$ $$\frac{v_{out}}{v_{in}} = \frac{-g_m \cdot r_o \cdot R_C}{r_o + R_C}$$ and $$\frac{i_{Out}}{i_{in}} = \frac{\beta_O \cdot r_O}{r_O + R_O}$$ (One should also consider the case of a source resistance, R_S , in series with the input) ECE 6412 - Analog Integrated Circuits and Systems II © P.E. Allen - 2002 Page 030-6 Lecture 030 – ECE4430 Review III (12/29/01) ## **Common Source Amplifier** Large-Signal: Small-Signal: ECE 6412 - Analog Integrated Circuits and Systems II # **Summary of Single BJT Transistor Amplifiers** | Small-Signal
Performance | Common
Emitter | Common
Base | Common Collector | |-----------------------------|--------------------------|-----------------------------------|--| | Input Resistance | r_{π} (Medium) | $\frac{r_{\pi}}{1+\beta_o}$ (Low) | r_{π} +(1+ β_o) R_E (High) | | Output Resistance | r _o
(High) | $r_O(1+\beta_O)$ (Very high) | $\frac{r_{\pi} + R_S}{1 + \beta_O}$ (Very low) | | Voltage Gain | $-g_mR_L$ | $g_m R_L$ | 1 | | Current Gain | eta_o | -α | $-(1+\beta_{o})$ | ECE 6412 - Analog Integrated Circuits and Systems II © P.E. Allen - 2002 Lecture 030 – ECE4430 Review III (12/29/01) Page 030-8 # **Summary of Single MOSFET Transistor Amplifiers** | Small-Signal
Performance | Common
Source | Common
Gate | Common
Drain | |-----------------------------|--|---------------------------------------|------------------------| | Input Resistance | 8 | $\frac{r_{ds} + R_D}{1 + g_m r_{ds}}$ | 8 | | Output Resistance | $\frac{r_{ds}R_D}{r_{ds} + R_D}$ | $\frac{r_{ds}R_D}{r_{ds}+R_D}$ | $\frac{R_S}{1+g_mR_S}$ | | Voltage Gain | $\frac{-g_m \cdot r_{ds} \cdot R_D}{r_{ds} + R_D}$ | $g_m R_D$ | 0.8 | | Current Gain | ∞ | -1 | ∞ | #### **BJT Cascode Amplifer** Circuit and small-signal model: If $\beta_1 \approx \beta_2$ and r_0 can be neglected, then: $$R_{in} = r_{\pi 1}$$ $$R_{out} \approx \beta_2 r_{o2}$$ $$\frac{v_{out}}{v_{in}} = \left(\frac{v_{out}}{v_a}\right)\left(\frac{v_a}{v_{in}}\right) = (g_{m2}R_L)\left(\frac{r_{\pi 2}}{1 + \beta_{o2}} \cdot \frac{-\beta_{o1}}{r_{\pi 1}}\right) \approx (g_{m2}R_L)(-1) = -g_{m2}R_L$$ $$\frac{i_{out}}{i_{in}} = \alpha_2 \beta_1$$ The advantage of the cascode is that the gain of Q1 is -1 and therefore the Miller capacitor, C_{μ} , is not translated to the base-emitter as a large capacitor. ECE 6412 - Analog Integrated Circuits and Systems II © P.E. Allen - 2002 Lecture 030 - ECE4430 Review III (12/29/01) Page 030-10 ## MOS Cascode Amplifier Circuit and smallsignal model: Small-signal performance (assuming a load resistance in the drain of R_L): $$R_{in} = \infty$$ Using nodal analysis, we can write, $[g_{ds1} + g_{ds2} + g_{m2}]v_1 - g_{ds2}v_{out} = -g_{m1}v_{in}$ and $-[g_{ds2} + g_{m2}]v_1 + (g_{ds2} + G_L)v_{out} = 0$ Solving for v_{out}/v_{in} yields, $$\frac{v_{out}}{v_{in}} = \frac{-g_{m1}(g_{ds2} + g_{m2})}{g_{ds1}g_{ds2} + g_{ds1}G_L + g_{ds2}G_L + G_Lg_{m2}} \cong \frac{-g_{m1}}{G_L} = -g_{m1}R_L$$ Note that unlike the BJT cascode, the voltage gain, v_1/v_{in} is greater than -1. $$\frac{v_1}{v_{in}} = -g_{m2} \left[r_{ds2} || \left(\frac{r_{ds2} + R_L}{1 + g_{m2} r_{ds2}} \right) \right] \approx -\frac{r_{ds2} + R_L}{r_{ds2}} = -\left(1 + \frac{R_L}{r_{ds2}} \right) (R_L < r_{ds2} \text{ for the gain to be -1})$$ The small-signal output resistance is, $$r_{out} = [r_{ds1} + r_{ds2} + g_{m2}r_{ds1}r_{ds2}] || R_L \cong R_L$$ ECE 6412 - Analog Integrated Circuits and Systems II Fig. 030-08 #### Transconductance Characteristic of the BJT Differential Amplifier Consider the following NPN-BJT differential amplifier (sometimes called an emitter-coupled pair): Large-Signal Analysis: 1.) Input loop eq.: $$v_{I1}$$ - v_{BE1} + v_{BE2} - v_{I2} = v_{I1} - v_{I2} - v_{BE1} + v_{BE2} = v_{ID} - v_{BE1} + v_{BE2} = 0 2.) Forward-active region: $$v_{BE1} = V_t \ln \left(\frac{i_{C1}}{I_{S1}} \right)$$ and $v_{BE2} = V_t \ln \left(\frac{i_{C2}}{I_{S2}} \right)$ 3.) If $$I_{S1} = I_{S2}$$ then $$\frac{iC1}{iC2} = \exp\left(\frac{v_{I1} - v_{I2}}{V_t}\right) = \exp\left(\frac{v_{ID}}{V_t}\right)$$ - 4.) Nodal current equation at the emitters: $-(i_{E1}+i_{E2}) = I_{EE} = \frac{1}{\alpha_F}(i_{C1}+i_{C2})$ - 5.) Combining the above equations gives: $i_{C1} = \frac{\alpha_F I_{EE}}{1 + \exp\left(\frac{-v_{ID}}{V_t}\right)}$ and $i_{C2} = \frac{\alpha_F I_{EE}}{1 + \exp\left(\frac{v_{ID}}{V_t}\right)}$ ECE 6412 - Analog Integrated Circuits and Systems II © P.E. Allen - 2002 Lecture 030 - ECE4430 Review III (12/29/01) Page 030-12 ## Differential and Common-mode Small-Signal BJT Amplifier Performance The small-signal performance of a differential amplifier can be separated into a differential mode and common mode analysis. This separation allows us to take advantage of the following simplifications. Note: The half-circuit concept is valid as long as the resistance seen looking into each emitter is approximately the same. #### **Transconductance Performance of the Differential Amplifier** Consider the following n-channel differential amplifier: Where should bulk be connected? Consider a p-well, CMOS technology, - 1.) Bulks connected to the well: No modulation of V_T but large common mode parasitic capacitance. - 2.) Bulks connected to ground: Smaller common mode parasitic capacitors, but modulation of V_T . If the technology is n-well CMOS, the bulks must be connected to ground. ECE 6412 - Analog Integrated Circuits and Systems II © P.E. Allen - 2002 Lecture 030 - ECE4430 Review III (12/29/01) Page 030-14 ## **Transconductance Performance of the Differential Amplifier - Continued** Defining equations (Assume that the MOSFETs are in saturation): $$v_{ID} = v_{GS1} - v_{GS2} = \left(\frac{2i_{D1}}{\beta}\right)^{1/2} - \left(\frac{2i_{D2}}{\beta}\right)^{1/2}$$ and $I_{SS} = i_{D1} + i_{D2}$ Solution: $$i_{D1} = \frac{I_{SS}}{2} + \frac{I_{SS}}{2} \left(\frac{\beta v_{ID}^2}{I_{SS}} - \frac{\beta^2 v_{ID}^4}{4I_{SS}^2} \right)_{1/2} \quad \text{and} \quad i_{D2} = \frac{I_{SS}}{2} - \frac{I_{SS}}{2} \left(\frac{\beta v_{ID}^2}{I_{SS}} - \frac{\beta^2 v_{ID}^4}{4I_{SS}^2} \right)_{1/2}$$ which are valid for $v_{ID} < (2I_{SS}/\beta)^{1/2}$. Illustration of the result: #### **Differential and Common-mode Small-Signal Performance** The small-signal performance of a differential amplifier can be separated into a differential mode and common mode analysis. This separation allows us to take advantage of the following simplifications. Note: The half-circuit concept is valid as long as the resistance seen looking into each source is approximately the same. ECE 6412 - Analog Integrated Circuits and Systems II © P.E. Allen - 2002 Lecture 030 - ECE4430 Review III (12/29/01) Page 030-16 ## Other Characteristics of the Differential Amplifier - Common-mode rejection ratio - Input common-mode range - Slew rate #### BJT: *ICMR*: The maximum and minimum input common mode range is: $$v_{ic}(\text{max}) = V_{CC} - 0.5I_{EE}R_C - v_{CE1}(\text{sat}) + V_{BE1}$$ $$v_{ic}(\min) = V_{EE} + v_{CE3}(\text{sat}) + V_{BE1}$$ SR: The differential amplifier has a slew rate limit of I_{EE}/C_{eq} where C_{eq} is the capacitance seen to ground from either collector. #### **MOSFET:** *ICMR*: The maximum and minimum input common mode range is: $$v_{ic}(\text{max}) = V_{DD} - 0.5I_{SS}R_D + V_{T1}$$ $$v_{ic}(\min) = V_{SS} + v_{DS3}(\text{sat}) + V_{GS1}$$ SR: The differential amplifier has a slew rate limit of I_{SS}/C_{eq} where C_{eq} is the equivalent capacitance seen from either of the drains to ground. # TRANSISTOR CURRENT SOURCES AND ACTIVE LOADS Summary of Current Sinks and Sources | Current Sink/Source | rOUT | V_{MIN} | |---|--|--| | Simple MOS Current Sink | $r_{ds} = \frac{1}{\lambda I_D}$ | $V_{DS}(\text{sat}) = V_{ON}$ | | Simple BJT Current Sink | $r_O = \frac{V_A}{I_C}$ | $V_{CE}(\text{sat}) \approx 0.2\text{V}$ | | Cascode MOS | $\approx g_m 2^r ds 2^r ds 1$ | $V_T + 2V_{ON}$ | | Cascode BJT | $pprox eta_F r_O$ | $2V_{CE}(\text{sat})$ | | Minimum <i>V_{MIN}</i> Cascode Current Sink | $\approx g_m 2^r ds 2^r ds 1$ | $2V_{ON}$ | | Regulated Cascode Current
Sink | $\approx r_{ds}3g_{m}3r_{ds}2g_{m}4(r_{ds}4 r_{ds}5)$ | $\approx V_T + V_{ON}$ | | Minimum V_{MIN} Regulated Cascode Current Sink | $\approx r_{ds}3g_{m}3r_{ds}2g_{m}4(r_{ds}4 r_{ds}5)$ | ≈V _{ON} | ECE 6412 - Analog Integrated Circuits and Systems II © P.E. Allen - 2002 Lecture 030 – ECE4430 Review III (12/29/01) Page 030-18 # **Summary of MOS Current Mirrors** | Current
Mirror | Accuracy | Output
Resistance | Input
Resistance | Minimum
Output
Voltage | Minimum
Input Voltage | |---------------------------------|--------------------|----------------------|---------------------|--|------------------------------------| | Simple | Poor | r_{ds} | $\frac{1}{g_m}$ | V_{ON} | V_T + V_{ON} | | Cascode | Excellent | $g_m r_{ds}^2$ | $\frac{2}{8m}$ | V_T +2 V_{ON} | $2(V_T + V_{ON})$ | | Wide Output
Swing
Cascode | Excellent | $g_m r_{ds}^2$ | $\frac{1}{g_m}$ | $2V_{ON}$ | V _T +V _{ON} | | Self-biased
Cascode | Excellent | $g_m r_{ds}^2$ | $R + \frac{1}{g_m}$ | $2V_{ON}$ | V_T +2 V_{ON} | | Wilson | Poor | $g_m r_{ds}^2$ | $\frac{2}{g_m}$ | $2(V_T+V_{ON})$ | V_T +2 V_{ON} | | Regulated
Cascode | Good-
Excellent | $gm^2r_{ds}^3$ | $\frac{1}{g_m}$ | V_T +2 V_{ON} (min. is $2V_{ON}$) | $V_T + V_{ON}$ (min. is V_{ON}) | #### **Summary of BJT Current Mirrors** | Current
Mirror | Accuracy | Output
Resistance | Input
Resistance | Minimum
Output
Voltage | Minimum
Input Voltage | |---------------------------------|--------------------|----------------------|-------------------------|------------------------------|-----------------------------| | Simple | Poor | r_{O} | $\frac{1}{g_m}$ | $V_{CE}(\text{sat})$ | V_{BE} | | Cascode | Excellent | $eta_{\!F}r_o$ | $\frac{2}{8m}$ | $V_{CE}(\text{sat})+V_{BE}$ | $2V_{BE}$ | | Wide Output
Swing
Cascode | Excellent | $eta_{F}r_{o}$ | $\frac{1}{g_m}$ | 2V _{CE} (sat) | V_{BE} | | Self-biased
Cascode | Excellent | $eta_F r_o$ | $R + \frac{1}{g_m}$ | 2V _{CE} (sat) | $V_{CE}(\text{sat})+V_{BE}$ | | Wilson | Poor | $eta_{F}r_{o}$ | $\frac{2}{g_m}$ | $V_{CE}(\text{sat})+V_{BE}$ | $V_{CE}(\text{sat})+V_{BE}$ | | Regulated
Cascode | Good-
Excellent | $eta_{F}r_{o}$ | $\frac{1}{g_m}$ or less | V _{CE} (sat)* | V _{CE} (sat)* | ^{*} One can design the regulated cascode so that effectively the minimum value of V_{MIN} (out) is just $V_{CE}(\text{sat})$. ECE 6412 - Analog Integrated Circuits and Systems II © P.E. Allen - 2002 Lecture 030 – ECE4430 Review III (12/29/01) Page 030-20 ## **Active Load Amplifiers** What is an active load amplifier? It is a combination of any of the above transconductors and loads to form an amplifier. (Remember that the above are only *some* of the examples of transconductors and loads.) ECE 6412 - Analog Integrated Circuits and Systems II #### **BJT Differential Amplifier with a Current Mirror Load** Design Considerations: <u>Constraints</u> <u>Specifications</u> Power supply Small-signal gain Technology Frequency response (C_L) Temperature ICMR Slew rate (C_L) Power dissipation $$A_v = g_{m1}R_{out}$$ $$\omega_{-3dB} = 1/R_{out}C_L$$ $$v_{IC}(\max) = V_{CC} - |V_{BE3}| - V_{CE1}(\text{sat}) + V_{BE1} \approx V_{CC} - V_{CE1}(\text{sat})$$ $$v_{IC}(\min) = V_{EE} + V_{CE5}(\text{sat}) + V_{BE1}$$ $$SR = I_{EE}/C_L$$ $P_{diss} = (V_{CC} + |V_{EE}|) \cdot \text{All dc currents flowing from } V_{CC} \text{ or to } V_{EE}$ © P.E. Allen - 2002 Lecture 030 – ECE4430 Review III (12/29/01) Page 030-22 ## **CMOS Differential Amplifier with a Current Mirror Load** Design Considerations: <u>Constraints</u> <u>Specifications</u> Power supply Small-signal gain Technology Frequency response (C_L) Temperature ICMR Slew rate (C_L) Power dissipation Relationships $$A_v = g_{m1}R_{out}$$ $$\omega_{-3dB} = 1/R_{out}C_L$$ $$V_{IC}(\text{max}) = V_{DD} - V_{SG3} + V_{TN1}$$ $$V_{IC}(\min) = V_{DS5}(\text{sat}) + V_{GS1} = V_{DS5}(\text{sat}) + V_{GS2}$$ $$SR = I_{SS}/C_L$$ $P_{diss} = (V_{DD} + |V_{SS}|) \cdot \text{All dc currents flowing from } V_{DD} \text{ or to } V_{SS}$ #### **Summary of Active Load Amplifiers** - Active load amplifier consists of a transconductor and a load - There are a large number of combinations of loads and transconductors possible. We have not considered the many cascoded possibilities and other configurations. - The BJT amplifier generally has more gain and wider signal swing than the MOS amplifier - The voltage gain of the MOS transconductor with a current source or current mirror load is inversely proportional to the square root of the bias current. - The current mirror load differential amplifier is a widely used input stage - The frequency response is generally determined by the dominant pole which is found at points in the circuit that are high impedance to ac ground and large capacitance - The active load amplifier is the primary gain stage in operational amplifiers and other applications and will be a fundamental building block in more complex circuits - Performance not considered include slew rate and noise ECE 6412 - Analog Integrated Circuits and Systems II © P.E. Allen - 2002 Lecture 030 - ECE4430 Review III (12/29/01) Page 030-24 #### **SUMMARY** - Single and Multiple Transistor Amplifiers - Characterization - BJT: Common emitter, common-base, common-collector, general - MOSFET: Common source, common-gate, common-drain, general - Cascode Amplifiers - Differential Amplifiers - Differential mode analysis (balance requirements) ⇒ Half-circuit concept - Common mode analysis ⇒ Half-circuit concept - Input common mode range and slew rate - Transistor Current Sources and Current Mirrors - Active Load Amplifiers - Other Material not Included in this Review - Voltage and Current References - Bandgap Voltage Reference - Simple two-stage op amps