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LECTURE 120 – COMPENSATION OF OP AMPS - I
(READING: GHLM – 425-434 and 624-638, AH – 249-260)

INTRODUCTION
The objective of this presentation is to present the principles of compensating two-stage
op amps.
Outline
•  Compensation of Op Amps

General principles
Miller, Nulling Miller
Self-compensation
Feedforward

•  Summary
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GENERAL PRINCIPLES OF OP AMP COMPENSATION
Objective

Objective of compensation is to achieve stable operation when negative feedback is
applied around the op amp.

Types of Compensation
1.  Miller - Use of a capacitor feeding back around a high-gain, inverting stage.

•  Miller capacitor only
•  Miller capacitor with an unity-gain buffer to block the forward path through the

compensation capacitor.  Can eliminate the RHP zero.
•  Miller with a nulling resistor.  Similar to Miller but with an added series resistance

to gain control over the RHP zero.
2.   Feedforward - Bypassing a positive gain amplifier resulting in phase lead.  Gain can

be less than unity.
3.  Self compensating - Load capacitor compensates the op amp.
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Single-Loop, Negative Feedback Systems
Block diagram:

A(s) = differential-mode voltage gain of the
op amp

F(s) = feedback transfer function from the
output of op amp back to the input.

Definitions:
•  Open-loop gain = L(s) = -A(s)F(s)

•  Closed-loop gain = 
Vout(s)
Vin(s)  = 

A(s)
1+A(s)F(s) 

Stability Requirements:
The requirements for stability for a single-loop, negative feedback system is,

|A(jω0°)F(jω0°)| = |L(jω0°)| < 1
where ω0° is defined as

Arg[−A(jω0°)F(jω0°)] = Arg[L(jω0°)] = 0°
Another convenient way to express this requirement is

Arg[−A(jω0dB)F(jω0dB)] = Arg[L(jω0dB)] > 0°
where ω0dB is defined as

|A(jω0dB)F(jω0dB)| = |L(jω0dB)| = 1

A(s)

F(s)

Σ
-

+
Vin(s) Vout(s)

Fig. 120-01 
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Illustration of the Stability Requirement using Bode Plots
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A measure of stability is given by the phase when |A(jω)F(jω)| = 1.  This phase is called
phase margin.

Phase margin = ΦM = Arg[-A(jω0dB)F(jω0dB)] = Arg[L(jω0dB)]
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Why Do We Want Good Stability?
Consider the step response of second-order system which closely models the closed-loop
gain of the op amp.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 5 10 15

45°
50°
55°

60°
65°

70°vout(t)
Av0

ωot = ωnt (sec.)
Fig. 120-03

+
-

A “good” step response is one that quickly reaches its final value.
Therefore, we see that phase margin should be at least 45° and preferably 60° or larger.
(A rule of thumb for satisfactory stability is that there should be less than three rings.)
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Uncompensated Frequency Response of Two-Stage Op Amps
Two-Stage Op Amps:

Fig. 120-04
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Small-Signal Model:

vout

Fig. 120-05

gm1vin
2

R1 C1

+

-
v1

gm2vin
2 gm4v1 R2 C2 gm6v2

+

-
v2 R3 C3

+

-

D1, D3 (C1, C3) D2, D4 (C2, C4) D6, D7 (C6, C7)

Note that this model neglects the base-collector and gate-drain capacitances for purposes
of simplification.
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Uncompensated Frequency Response of Two-Stage Op Amps - Continued
For the MOS two-stage op amp:

  R1  ≈ 
1

gm3 ||rds3||rds1 ≈ 
1

gm3 R2 = rds2|| rds4 and    R3 = rds6|| rds7

  C1 = Cgs3+Cgs4+Cbd1+Cbd3    C2 = Cgs6+Cbd2+Cbd4 and C3 = CL +Cbd6+Cbd7
For the BJT two-stage op amp:

  R1  = 
1

gm3 ||rπ3||rπ4||ro3 ≈ 
1

gm3 R2 = rπ6|| ro2|| ro4 ≈ rπ6 and     R3 = ro6|| ro7

  C1 = Cπ3+Cπ4+Ccs1+Ccs3    C2 = Cπ6+Ccs2+Ccs4 and   C3 = CL+Ccs6+Ccs7

Assuming the pole due to C1 is much greater than the poles due to C2 and C3 gives,

voutgm1vin
R2 C2 gm6v2

+

-
v2 R3 C3

+

-

Fig. 120-06

Voutgm1Vin
RI CI gmIIVI

+

-
VI RII CII

+

-

The locations for the two poles are given by the following equations

p’1 = 
−1

RICI
and p’2 = 

−1
RIICII

where RI (RII) is the resistance to ground seen from the output of the first (second) stage
and CI (CII) is the capacitance to ground seen from the output of the first (second) stage.
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Uncompensated Frequency Response of an Op Amp
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If we assume that F(s) = 1 (this is the worst case for stability considerations), then the
above plot is the same as the loop gain.
Note that the phase margin is much less than 45°.
Therefore, the op amp must be compensated before using it in a closed-loop
configuration.
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MILLER COMPENSATION
Two-Stage Op Amp

Fig. 120-08
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The various capacitors are:
Cc = accomplishes the Miller compensation

CM = capacitance associated with the first-stage mirror (mirror pole)

CI = output capacitance to ground of the first-stage

CII = output capacitance to ground of the second-stage
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Compensated Two-Stage, Small-Signal Frequency Response Model Simplified
Use the CMOS op amp to illustrate:
1.)  Assume that gm3 >> gds3 + gds1

2.)  Assume that 
gm3
CM   >> GB

Therefore,

-gm1vin
2 CM

1
gm3 gm4v1

gm2vin
2 C1 rds2||rds4

gm6v2 rds6||rds7 CL

v1 v2
Cc

+

-

vout

Fig. 120-09

rds1||rds3

gm1vin rds2||rds4 gm6v2 rds6||rds7
CII

v2
Cc

+

-

voutCI

+

-
vin

Same circuit holds for the BJT op amp with different component relationships.
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General Two-Stage Frequency Response Analysis
where
    gmI = gm1 = gm2, RI = rds2||rds4, CI = C1

and
   gmII = gm6, RII = rds6||rds7, CII = C2 = CL

Nodal Equations:
   -gmIVin = [GI + s(CI + Cc)]V2 - [sCc]Vout    and   0 = [gmII - sCc]V2 + [GII + sCII + sCc]Vout

Solving using Cramer’s rule gives,
Vout(s)
Vin(s)  = 

gmI(gmII˚- sCc)
GIGII+s [GII(CI+CII)+GI(CII+Cc)+gmIICc]+s2[CICII+CcCI+CcCII]

= 
Ao[1˚- s (Cc/gmII)]

1+s [RI(CI+CII)+RII(C2+Cc)+gmIIR1RIICc]+s2[RIRII(CICII+CcCI+CcCII)]
where, Ao = gmIgmIIRIRII

In general, D(s) = 










1-
s
p1

 










1-
s
p2

 = 1-s 








1

p1
+

1
p2

+
s2

p1p2
  → D(s) ≈ 1-

s
p1

 + 
s2

p1p2
 , if |p2|>>|p1|

∴  p1 = 
-1

RI(CI+CII)+RII(CII+Cc)+gmIIR1RIICc
 ≈ 

-1
gmIIR1RIICc

 ,  z = 
gmII

Cc
 

p2 = 
-[RI(CI+CII)+RII(CII+Cc)+gmIIR1RIICc]

RIRII(CICII+CcCI+CcCII)  ≈ 
-gmIICc

CICII+CcCI+CcCII ≈ 
-gmII
CII , CII > Cc > CI

gmIVin RI gmIIV2 RII CII

V2
Cc

+

-
VoutCI

+

-
Vin

Fig.120-10
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Summary of Results for Miller Compensation of the Two-Stage Op Amp
There are three roots of importance:
1.)  Right-half plane zero:

z1= 
gmII
Cc  = 

gm6
Cc

This root is very undesirable- it boosts the magnitude while decreasing the phase.
2.)  Dominant left-half plane pole (the Miller pole):

p1 ≈ 
-1

gmIIRIRIICc = 
-(gds2+gds4)(gds6+gds7)

gm6Cc
This root accomplishes the desired compensation.

3.)  Left-half plane output pole:

p2 ≈ 
-gmII
CII  ≈ 

-gm6
CL

This pole must be ≥ unity-gainbandwidth or the phase margin will not be satisfied.
Root locus plot of the Miller compensation:

jω

σ

Cc=0
Open-loop poles

Closed-loop poles, Cc≠0

p2 p2' p1p1' z1 Fig. 120-11
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Compensated Open-Loop Frequency Response of the Two-Stage Op Amp
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Note that the unity-gainbandwidth, GB, is

GB = Avd(0)·|p1| = (gmIgmIIRIRII)
1

gmIIRIRIICc = 
gmI
Cc  = 

gm1
Cc  = 

gm2
Cc
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Conceptually, where do these roots come from?
1.) The Miller pole:

|p1| ≈ 
1

RI(gm6RIICc) 

2.)  The left-half plane output pole:

|p2| ≈ 
gm6
CII

3.)  Right-half plane zero (Zeros always arise from multiple
paths from the input to output):

vout = 








-gm6RII(1/sCc)

RII + 1/sCc
 v’ + 









RII

RII + 1/sCc
 v’’ = 

-RII







gm6

sCc
 - 1

 RII + 1/sCc
 v

where v = v’ = v’’.
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Fig. 120-13
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Influence of the Mirror Pole
Up to this point, we have neglected the influence of the pole, p3, associated with the
current mirror of the input stage.  A small-signal model for the input stage that includes
C3 is shown below:

gm3rds3
1

rds1

gm1Vin

rds2

i3

i3 rds4C3

+

-
Vo1

2
gm2Vin

2

Fig. 120-16

The transfer function from the input to the output voltage of the first stage, Vo1(s), can be
written as

Vo1(s)
 Vin(s)  = 

-gm1
2(gds2+gds4) 








gm3+gds1+gds3

gm3+ gds1+gds3+sC3
 + 1  ≈ 

-gm1
2(gds2+gds4) 








sC3 + 2gm3

 sC3 + gm3
  

We see that there is a pole and a zero  given as

p3 = - 
gm3
C3

   and z3 = - 
2gm3
C3
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Influence of the Mirror Pole – Continued
Fortunately, the presence of the zero tends to negate the effect of the pole. Generally,

the pole and zero due to C3 is greater than GB and will have very little influence on the
stability of the two-stage op amp.  

The plot shown illustrates
the case where these roots are
less than GB and even then
they have little effect on
stability.

In fact, they actually
increase the phase margin
slightly because GB is
decreased.
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SUMMARY
Compensation

• Designed so that the op amp with unity gain feedback (buffer) is stable
• Types

- Miller
- Miller with nulling resistors
- Self Compensating
- Feedforward


