Homework Assignment No. 12

<u>Problem 1 – P7.2-1</u>

Find the GB of a two-stage op amp using Miller compensation using a nulling resistor that has 60° phase margin where the second pole is $-10x10^6$ rads/sec and two higher poles both at $-100x10^6$ rads/sec. Assume that the RHP zero is used to cancel the second pole and that the load capacitance stays constant. If the input transconductance is 500μ A/V, what is the value of C_c ?

Solution

The resulting higher-order poles are two at $-100x10^6$ radians/sec. The resulting phase margin expression is,

$$PM = 180^{\circ} - \tan^{-1}(A_{v}(0)) - 2\tan^{-1}\left(\frac{GB}{10^{7}}\right) = 90^{\circ} - 2\tan^{-1}\left(\frac{GB}{10^{7}}\right) = 60^{\circ}$$

$$\therefore 30^{\circ} = 2\tan^{-1}\left(\frac{GB}{10^{7}}\right) \rightarrow \left(\frac{GB}{10^{7}}\right) = \tan(15^{\circ}) = 0.2679$$

$$GB = 2.679 \times 10^{7} = \frac{g_{m1}}{C_{c}} \rightarrow C_{c} = \frac{500 \times 10^{-6}}{26.79 \times 10^{7}} = \underline{18.66 \text{pF}}$$

Problem 2 – P7.2-4

Use the technique of Ex. 7.2-2 to extend the GB of the cascode op amp of Ex. 6.5-2 as much as possible that will maintain 60° phase margin. What is the minimum value of C_L for the maximum GB?

Solution

Assuming all channel lengths to be 1 μm , the total capacitance at the source of M7 is

$$C_7 = C_{gs7} + C_{bd7} + C_{gd6} + C_{bd6}$$

or, $C_7 = 75 + 51 + 9 + 51 = 186$ fF
 $g_{m7} = 707$ μS

Thus, the pole at the source of M7 is

$$p_{S7} = -\frac{g_{m7}}{C_7} = -605$$
 MHz.

The total capacitance at the source of M12 is

$$C_{12} = C_{gs12} + C_{bd12} + C_{gd11} + C_{bd11}$$
 or,
$$C_{12} = 34 + 29 + 4 + 29 = 96 \text{ fF}$$

$$g_{m12} = 707 \ \mu S$$

Thus, the pole at the source of M12 is

$$p_{S12} = -\frac{g_{m12}}{C_{12}} = -1170$$
 MHz.

The total capacitance at the drain of M4 is

$$C_4 = C_{gs4} + C_{gs6} + C_{bd4} + C_{gd2} + C_{bd2}$$
or,
$$C_4 = 43 + 75 + 21 + 3 + 19 = 161 \text{ fF}$$

$$g_{m4} = 283 \ \mu\text{S}$$

Problem 2 - Continued

Thus, the pole at the drain of M4 is

$$p_{D4} = -\frac{g_{m4}}{C_4} = -280 \text{ MHz}.$$

The total capacitance at the drain of M8 is

$$C_8 = C_{gd8} + C_{bd8} + C_{gs10} + C_{gs12}$$

or,
$$C_8 = 9 + 51 + 34 + 34 = 128 \, \text{fF}$$

$$R_2 + \frac{1}{g_{m10}} = 3.4 \ K\Omega$$

Thus, the pole at the drain of M8 is

$$p_{D8} = -\frac{1}{\left(R_2 + \frac{1}{g_{m10}}\right)C_8} = -366 \text{ MHz}.$$

For a phase margin of 60° , we have

$$PM = 180^{\circ} - \left[90^{\circ} - \left[\tan^{-1} \left(\frac{GB}{p_{S7}} \right) + \tan^{-1} \left(\frac{GB}{p_{S12}} \right) + \tan^{-1} \left(\frac{GB}{p_{D4}} \right) + \tan^{-1} \left(\frac{GB}{p_{D8}} \right) \right] \right]$$

Solving the above equation

$$GB \approx 65 \text{ MHz}.$$

And,
$$A_{v} = 6925 \text{ V/V}$$

Thus,
$$p_1 = 9.39$$
 KHz, and $C_L \ge 1.54$ pF

Problem 3 - Problem 7.3-7

(a.) If all transistors in Fig. 7.3-12 have a dc current of 50μ A and a W/L of 10μ m/ 1μ m, find the gain of the common mode feedback loop. (b.) If the output of this amplifier is cascoded, then repeat part (a.).

Solution

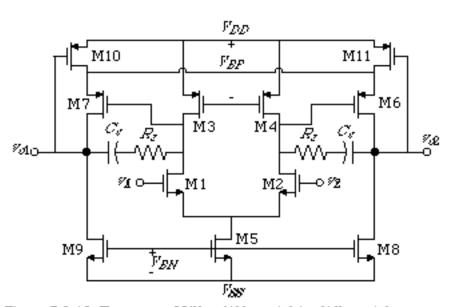


Figure 7.3-12 Two-stage, Miller, differential-in, differential-out op amp with common-mode stabilization.

Problem 3 - Continued

The loop gain of the common-mode feedback loop is,

CMFB Loop gain
$$\approx -\frac{g_{m10}}{g_{ds9}} = -g_{m10}r_{ds9}$$
 or $-\frac{g_{m11}}{g_{ds8}} = -g_{m11}r_{ds8}$
With $I_D = 50\mu$ A and $W/L = 10\mu$ m/1 μ m, $g_{m10} = \sqrt{\frac{2K_P'WI_D}{L}} = \sqrt{2\cdot50\cdot10\cdot50}) = 223.6\mu$ S, $r_{dsN} = \frac{1}{\lambda_N I_D} = \frac{25}{50\mu\text{A}} = 0.5\text{M}\Omega$ and $r_{dsP} = \frac{1}{\lambda_P I_D} = \frac{20}{50\mu\text{A}} = 0.4\text{M}\Omega$
 \therefore CMFB Loop gain $\approx -g_{m10}r_{ds9} = -223.6(0.5) = -111.8\text{V/V}$

If the output is cascoded, the gain becomes,

CMFB Loop gain with cascoding
$$\approx -\frac{g_{m10}}{g_{ds9}} g_m(\text{cascode}) r_{ds}(\text{cascode})$$

$$= -g_{m10} \{ [r_{ds9} g_m(\text{cascode}) r_{ds}(\text{cascode})] || [g_{m7} r_{ds7} (r_{ds10} || r_{ds10}] \}$$

$$g_{mP} = \sqrt{\frac{2K_N'WI_D}{L}} = \sqrt{2 \cdot 110 \cdot 10 \cdot 50}) = 331.67 \mu \text{S}$$

$$= -(223.6)[(0.5 \cdot 331.67 \cdot 0.5) || (223.6)(0.4)(0.2)] = 223.6(14.7) = -3,290 \text{ V/V}$$

$$\therefore \text{ CMFB Loop gain with cascoding } \approx -3.290 \text{V/V}$$

Problem 4 – Problem 7.4-1

Calculate the gain, GB, SR and P_{diss} for the folded cascode op amp of Fig. 6.5-7b if V_{DD} = $-V_{SS}$ = 1.5V, the current in the differential amplifier pair is 50nA each and the current in the sources, M4 and M5, is 150nA. Assume the transistors are all 10μ m/ 1μ m, the load capacitor is 2pF and that n_1 is 2.5 for NMOS and 1.5 for PMOS.

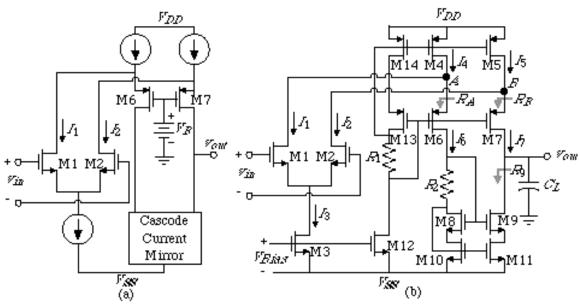


Figure 6.5-7 (a) Simplified version of an N-channel input, folded cascode op amp. (b) Practical version (a).

Problem 4 - Continued

Solution

$$g_{m1} = g_{m2} = \frac{I_D}{n_1(kT/q)} = \frac{50\text{nA}}{2.5 \cdot 25.9 \text{mV}} = 0.772 \mu \text{S} \quad \text{and } r_{ds1} = r_{ds2} = \frac{1}{I_D \lambda_N} = 500 \text{M}\Omega$$

$$g_{m4} = g_{m5} = \frac{I_D}{n_1(kT/q)} = \frac{150\text{nA}}{1.5 \cdot 25.9 \text{mV}} = 3.861 \mu \text{S} \quad \text{and } r_{ds4} = r_{ds5} = \frac{1}{I_D \lambda_N} = 133 \text{M}\Omega$$

$$g_{m6} = g_{m7} = \frac{I_D}{n_1(kT/q)} = \frac{100\text{nA}}{1.5 \cdot 25.9 \text{mV}} = 2.574 \mu \text{S} \quad \text{and } r_{ds6} = r_{ds5} = \frac{1}{I_D \lambda_N} = 200 \text{M}\Omega$$

$$g_{m8} = g_{m9} = g_{m10} = g_{m11} = \frac{I_D}{n_1(kT/q)} = \frac{100\text{nA}}{2.5 \cdot 25.9 \text{mV}} = 1.544 \mu \text{S}$$

$$g_{m8} - g_{m9} - g_{m10} - g_{m11} - n_1(kI/q) - 2.3 \cdot 25.9 \text{mV} - 1.3$$

and
$$r_{ds8} = r_{ds9} = r_{ds10} = r_{ds11} = \frac{1}{I_D \lambda_N} = 250 \text{M}\Omega$$

Gain: $A_v(0) = g_{m1} R_{out}$,

$$R_{out} \approx r_{ds11}g_{m9}r_{ds9}||[g_{m7}r_{ds7}(r_{ds5}||r_{ds2})] = 96.5G\Omega||34.23G\Omega = 25.269G\Omega$$

$$A_{\nu}(0) = 0.772 \mu \text{S} \cdot 25.269 \text{G}\Omega = 19,508 \text{ V/V}$$

 $GB = g_{m1}/C_L = 386$ krads/sec = $\underline{61.43}$ kHz (this assumes all other poles are greater than GB which is the case if C_L makes R_B approximately the same as R_A at $\omega = GB$.)

$$SR = 100 \text{nA/2pF} = \underline{0.05 \text{V/}\mu\text{s}}$$
 $P_{diss} = 3\text{V} \cdot (3.150 \text{nA}) = \underline{1.35 \mu\text{W}}$

Problem 5 – Pre-charge Buffer Design Problem

(Solution not available)